

SRI BHARATHI

ENGINEERING COLLEGE FOR WOMEN

(Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai)

Kaikkurichi, Pudukkottai -622 303

www.sbec.edu.in

NAAC DOCUMENTS

Quality Indicator Frame Work

Criterion – 1 CURRICULAR ASPECTS

Submitted by

IQAC
Internal Quality Assurance Cell

Sri Bharathi Engineering College for Women

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India

	Criterion 1	Curricular Aspects	100
--	-------------	--------------------	-----

- 1.1 Curricular Planning and Implementation(20)
- 1.1.1 The Institution ensures effective curriculum planning and delivery through a well-planned and documented process including Academic calendar and conduct of continuous internal Assessment

Table of contents

S.No	Description
1	Preface of the Course File
2	Review of Course File
3	Work Load
4	Course Plan
5	Course Committee Meeting
6	Content Beyond Syllabus
7	Assignment Question Paper
8	Assignment -Rubrics Based Evaluation
9	Academic Audit Form
10	Student Feedback on Faculty
11	Internal Assessment Schedule
12	Cycle Test Question Paper
13	Cycle Test Answer Key
14	Cycle Test Sample Answer Sheet
15	Cycle Test Co Based Mark Entry
16	Root Cause Analysis
17	Retest Schedule
18	Retest Sample Question Paper
19	Retest Attendance Sheet
20	Retest Co Based Mark Entry
21	Internal Mark Sheet- Anna University Portal
22	Anna University Grade Sheet
23	Co Po Attainment

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)
Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India
DEPARTMENT OF SCIENCE AND HUMANITIES

PREFACE OF THE COURSE FILE

Batch

: 2022-2026

Academic Year

: 2022-2023 / ODD

Program

: COMPUTER SCIENCE AND ENGINEERING

Year & Semester

: 1st Year / 1st Semester / 'A' Section

Course Code

: PH3151

NBA Course Code: C103

Name of the Course

: ENGINEERING PHYSICS

Faculty in-charge

: Mrs.R.SARATHA, AP/PHYSICS

Signature of the Faculty Incharge

HoD/S&H

HOD/S&H

SRÍ BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI PUDUKKOTTÁI - 622 303

PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303, Pudukkottai Dt.

(Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

DEPARTMENT OF SCIENCE AND HUMANITIES

REVIEW OF COURSE FILE

(To be pasted on the inner side of the file-backside).(#-State Yes/No.)

S.No	Details Date:	R-I-*	R-II- *&	R-III- *&	R-IV- *&\$	R-V- *&\$@
1.	Preface of the course file	yes				
2.	Vision, Mission, PEOs, POs, PSOs, Blooms taxonomy	yes				
3.	Subject handlers of yesteryears					
4.	Timetable/Workload of the staff – Distribution of teaching load – Roles and Responsibilities	yes				
5.	Syllabus signed by staff & HoD	yes				
6.	Lecture Schedule signed by staff & HoD	yes				
7.	Course Committee meeting circular and minutes	yes				-
8.	Identification of Curricular gap and Content Beyond the syllabus	yes				
9.	Self-study topics	Jyes				
10.	Previous AU Question papers	yes				
11.	Unit wise Q&A and Objective type questions	yes				
12.	Unit wise course material	yes				
13.	Assignment question paper with sample answer sheets and mark entry		Yes			
14.	Tutorial question paper with key and mark entry		Yes			1
15.	Class test/IA test Q Paper with Key, sample answer papers and mark entry		yes			
16.	IA Test- result analysis-CAP-evidence-root cause analysis.		yes			
17.	Retest –Q paper-Attendance-marks		yes			
18.	AU Web portal entry sheet		yes			
19.	Very poor performance in first two tests-action takencommunication to parents-evidence					
20.	Absence for two tests-action taken-communication to parents-evidence.					
21.	Indiscipline of student reported, if any					
22.	Special class/coaching class/remedial class/attendance-CAP					
23.	Conduct of Seminar, Quizzes - proof			1		
24.	Content beyond the syllabus - proof			yes		
25.	Student feedback on faculty			yes		
26.	Course end survey					
27.	Internal Assessment sheet	,		yes		
28.	AU question paper with students feedback			UC3		
29.	Discrepancy of the question paper and correspondence, if any					
30.	AU result analysis-Details of arrear students.					
31.	AU grade sheet				-	yes
32.	CO – PO & PSO attainment sheet					400
		2. set	P. SLIE	Risat	2. seth	8. Set
Λ	Signature of HoD/ S&H	2-sch	P. sett	Risch	P. Ret	R-SCH
/	Dr. S.THILAGAVATHIME	1	,	1	~ ~	

PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN (Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25) KAIKKURICHI, PUDUKKOTTAI - 622 303

ACADEMIC YEAR (2022 – 2023) -ODD SEMESTER

INDIVIDUAL STAFF WORKLOAD FOR FIRST YEAR

S. NO	STAFF NAME	SUBJECT CODE & NAME	YEAR & DEPT	NO OF HOURS	TOTAL HOURS
1	Dr.M.Iswarya	MA3151- Matrices and Calculus	I SEC-C& ECE & EEE	05	15
		MA8551- Algebra and number theory	III& CSE	05	
		MA3303-Probability and complex function	II& EEE	05	<i>j.</i>
2	Ms.R.Rajeswari	MA3151- Matrices and Calculus	I-SEC-B& CIVIL	05	
	3	MA3355- Random process and linear algebra	II& ECE	05	10
3	Ms.R.Divya	MA3151- Matrices and Calculus	I-SEC-A & CSE	06	
J	1110111121111	MA8353- Transforms & Partial Differential Equations	II& CIVIL	05	16
		MA3354-Discrete mathematics	II& CSE	05	
4	Mrs.R.Saratha	PH3151-Engineering Physics	I SEC-A&CSE	04	07
		BS3171-Physics Laboratory	I SEC-A&CSE	03	
. 5	Mrs.V.Vinojini	PH3151-Engineering Physics	I SEC-C&ECE,EEE	04	07
J. J		BS3171-Physics Laboratory	I SEC-C&ECE,EEE	03	
6	Mrs.T.Renugadevi	PH3151-Engineering Physics	I SEC-B& CSE,CIVIL	04	07
		BS3171-Physics Laboratory	I SEC-B& CSE,CIVIL	03	
7	Ms.T.Annalakshmi	CY3151-Engineering Chemistry	I SEC-A& CSE	04	13
		BS3171-Chemistry Laboratory	I SEC-A,SEC-B& CSE, CIVIL	06	
		GE3451-Environmental science	II&CSE	03	
8	Mrs.S.Renugadevi	CY3151-Engineering Chemistry	I SEC-B& SEC-C& CSE, ČIVIL,ECE&EEE	10	13
		BS3171-Chemistry Laboratory	I SEC-C & ECE&EEE	03	
9	Mr.S.Ramesh Raja	HS3152- Professional English - I	I-SEC-A& CSE	05	
		GE3172-English laboratory	I SEC-A,SEC-B&SEC- C& CSE ,CIVIL ECE&EEE	06	18
		HS8581-Professional communication	III&CSE	02	
		HS8581-Professional communication	III& ECE, CIVIL	03	
		Soft Skills	IV&CSE	02	
10	Mrs.P.Alagumathi	HS3152- Professional English - I	I SEC-A, SEC-B& CSE,CIVIL,ECE&E EE	10	
		GE3172-English laboratory	ISEC-A,SEC-B& SEC-C& CSE,CIVIL,ECE&EEE	06	18
		Soft Skills	IV& ECE,CIVIL & EEE	02	

HOD SEH SRI BHURD AVENGINEERING COLLEGE FOR WOMEN Dr. S.THILAGAVATHI M.E., Ph.D., PRINCIPAL SRI BHARATHI ENGINEERING

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkoitai Dt. PRINCIPAL

SRI BHARATHI ENGINEERING
COLLEGEPTOROWANEN
KAIKKURICHI - 622 303.

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25) Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India

DEPARTMENT OF SCIENCE AND HUMANITIES

COURSE PLAN

Subject code: PH3151

Subject Name: Engineering Physics

Branch/Year/Sem: B.E CSE / I/ I

Batch: 2022 -2026

Staff Name: Mrs.R.Saratha

Academic year: 2022-2023

COURSE OBJECTIVES

- To make the students effectively to achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to be successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

TEXT BOOKS:

- 1. D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.
- 2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ. Press, 2013.
- 3. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017.
- 4. Engineering physics, Dr. G. Senthilkumar, VRB publishers pvt. Ltd.

REFERENCES:

- 1. R. Wolfson. Essential University Physics. Volume 1 & 2. Pearson Education (Indian Edition), 2009.
- 2. Paul A. Tipler, Physic Volume 1 & 2, CBS, (Indian Edition), 2004.
- 3. K.Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.
- 4. D.Halliday, R.Resnick and J.Walker. Principles of Physics, Wiley (Indian Edition), 2015.
- 5. N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer-Verlag, 2012.

WEBSITE RESOURSE

- W1. Gyroscope: https://www.youngwonks.com/blog/What-is-a-Gyroscope-and-How-Does-It-
- W2. Nd-YAG laser: https://easyelectronics.co.in/nd-yag-laser/#gsc.tab=0
- W3.ComptonEffect: https://eng.libretexts.org/Bookshelves/Materials Science/Supplemental Modules (Materials Science)/Electronic Properties/Compton Effect
- W4. Tunneling Miicroscope: https://afm.oxinst.com/modes/scanning-tunneling-microscopy-stm
- W5.Resonant Diode https://www.researchgate.net/publication/344001299_Resonant Tunneling_Diodes_Working_and_Application

TEACHING METHODOLOGIES

> BB

BLACK BOARD

> PPT

POWER POINT PRESENTATION

Dr. S.THILAGAVATHI M.E., Ph.D.
PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt.

LTPC 3 0 0 3

UNIT I MECHANICS

9

Multiparticle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of continuous bodies – of a diatomic molecule - torque – rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum – double pendulum –Introduction to nonlinear oscillations.

UNIT II ELECTROMAGNETIC WAVES

9

The Maxwell's equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNIT III OSCILLATIONS, OPTICS AND LASERS

9

Simple harmonic motion - resonance –analogy between electrical and mechanical oscillating systems - waves on a string - standing waves - traveling waves - Energy transfer of a wave - sound waves - Doppler effect. Reflection and refraction of light waves - total internal reflection - interference –Michelson interferometer –Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients - population inversion - Nd-YAG laser, CO_2 laser, semiconductor laser –Basic applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes-Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential —Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIOD

Dr. S.THILAGAVATHI M.E., Ph.D.,

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt.

Kalikkurchi - 622 303, Pudukkellai Dt.

Topic No	Topic Name	T/R* Book	Page No	Teaching Methodology	Date	Period	Cumulative periods
UNIT-I		MECHANIC	CS	1			(9)
81 1.	Multi purpose dynamics Centre of mass (CM) – CM of continous bodies	T1	113-116	BB	16.11.2022	1	1
2.	Motion of CM- Kinetic energy of the system of particles. Rotation of rigid body	TI	122-125	BB	19.11.2022	1	2
3.	Rotational Knematics, Rotational Kinetic energy and moment of inertia, Theorems of M.I(Content beyond the syllabus)	R1	462-464	ВВ	25.11.2022	n signi Snajios 1	3
4.	Moment of inertia of continous bodies and M.I of diatomic molecules	T1	156-158	PPT	28.11.2022	gailesi milve	4
5.	Torque, Rotational dynamics of rigid bodies and conservation of Angular momentum	T1	233-236	PPT	30.11.2022		5
6.	Rotational energy state of rigid diatomic molecule - Gyroscope	W1	- 29	BB	06.12.2022		6
7.	Torsional Pendulam	R1	325-327	BB	07.12.2022	100	7
8.	Double pendulam	R1	328-329	BB	13.12.2022	1	8
9.	problems	T4	1.58-1.64	BB	16.12.2022	ronenos nos l os	9
UNIT-II	LEARNING OUTCOME: At the end of unit, the students w Understand the importance of the students was a state of the students when the students was a state of the		1 35	laser insic	aset and COC Juston lason – I	l ga (-b) Mostab	S .775
10.				DD	20.12.2022	ratel a 2	(9)
11.	The Maxwell's equations Wave Equations	T2 T2	436-441	BB BB	20.12.2022	1	10
12.	Plane electromagnetic waves in vaccum	T2	572-575	BB	23.12.2022	1 1	11
13.	Conditions on the wave field	R1	250-256	BB	27.12.2022	andiod	13
14.	Properties of electromagnetic waves: speed, amplitude, Phase, orientation and waves in water	R1	572-578	PPT	28.12.2022		14
15.	Polaraization – producing electromagnetic waves	R4	861-866	BB	30.12.2022	stalogs	15
16.	Energy momentum in EM waves: Intensity waves from localized sources, momentum and radistion pressure.	R4	859-860	ВВ	10.01.2023	atemaa gor 1 ase sai saa	16

Dr. S.THILAGAVATHI M.E., Ph.D.,
PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303, Pudukkottai Dt.

COLLEGE FOR WOMEN

17.	Cell phone reception. Reflection and transmission of electromagnetic waves from a non conducting medium	R4	265-270	ВВ	11.01.2023	1	17
18.	Problems	T4	2.69-2.75	BB	12.01.2023	eq 1 ^{thei}	18
JNIT -	LEARNING OUTCOME: At the end of unit, the students wi Express their knowledge in F OSCILLATIONS	Electromag	gnetic waves.	RS	PCM-Kinetic	odies Jouan o la cyrte et cieid i	(9)
19.	Simple harmonic motion - resonance	R4	354-355	BB	16.01.2023	1	19
20.	Waves on a string	R4	388-387	BB	17.01.2023	1,11,00	20
21.	Standing waves	T1	263-265	BB	19.01.2023	monok	21
22.	Traveling waves energy transfer of a wave, sound waves – Doppler effect	T1	265-267	BB	20.01.2023	hropior duopior aupro	22
23.	Reflection and refraction of light waves total internal reflection – interference, Michelson interferometer	R4	938-941	BB	21.01.2023	ngulas nglas notlio satomis	23
24.	Theory of air wedge and experiment	T1	258-259	BB	24.01.2023	1	24
25.	Theory of laser characteristics – Spotaneous and stimulated emission – Einsten's coefficients-	R3	268-270	ВВ	31.01.2023	1 emoido	25
26.	Nd-Yag laser and CO2 laser	W2	-	BB	01.02.2023	MALA	26
27.	Semiconductor laser - Basic applications of laser in industry	R3	383-385	BB	08.02.2023	1	27
00	LEARNING OUTCOME: At the end of unit, the students will • Strong foundational knowled			and laser.	well's equation juations	he Max Maye Ed	1 .01. V .11
	UNIT-IV BASIC QUA	NTUM N	MECHANICS	5			(9)
28.	Photons and light waves - Electrons and matter waves	R4	1009-1010	BB	09.02.2023	interes	28
29.	Compton effect	W3	1 12	BB	10.02.2023	1	29
30.	The Schrodinger equation - Time dependent form	T1	696-698	ВВ	11.02.2023	kis 1 ho	30
31.	Time independent form	T1	701-703	BB	15.02.2023	lon.	31
32.	Meaning of wave function - Normalization	R4	1035-1036	BB	17.02.2023		32
33.	Free particle - particle in a infinite potential well: 1D	R3	33-35	BB	21.02.2023	1 1	33
34.	Particle in a infinite potential well: 2D	R3	35-36	BB	02.03.2023	1	34

Dr. S.THILAGAVATHI M.E., Ph.D.,
PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303. Pudukkottai Dt

35.	3D Boxes- Normalization		R3	42-45		BB		03.03.2023	1	35
36.	Probabilities and the correspondence principle, probl	ems	R3/T4	49-50 6.53-6.73	5	BB	Th	07.03.2023		36
2/2022	LEARNING OUTCOME: At the end of unit, the students will be able to • Understand the importance of quantum mechanics.									
	UNIT-V APPLIED QUANTUM MECHANICS (9)									
37.	The harmonic oscillator	R3		56-57		BB		08.03.2023	1	37
38.	Barrier penetration	T3		563-565		BB	4	09.03.2023	1	38
39.	Quantum tunnelling	T3		578-579		ВВ	103	10.03.2023	1	39
40.	Tunneling microscope	W4		-		PPT	2 2 4	13.03.2023	1	40
41.	Resonant diode	W5		-		PPT		16.03.2023	1	41
42.	Finite potential wells	R3		78-80		BB		17.03.2023	1	42
43.	Bloch's theorem for particles in a periodic potential	R4	1	030-1032		BB		21.03.2023	1	43
44.	Basics of Kronig-Penney model	R4	10	032-1034		BB		22.03.2023	1 .	44
45.	Origin of energy bands	R4	10	045-1046		BB		23.03.2023	1	45
	LEARNING OUTCOME: At the end of unit, the studen • Comprehend and apply qu				s tow	vards the	form	nation of energy	/ bands.	

COURSE OUTCOME

At the end of the course, the student should be able to:

- Acknowledge the importance of mechanics
- Express their knowledge in electromagnetic waves...
- Demonstrate a strong foundational knowledge in oscillations.
- Establish a strong foundational knowledge in fibre optics and laser.
- Comprehend the importance of quantum physics.
- Comprehend and apply quantum mechanical principles towards the formation of energybands.

CONTENT BEYOND THE SYLLABUS

➤ Gain Knowledge about Kinematics

CONTINUES INTERNAL ASSESSMENT DETAILS

ASSESMENT NUMBER	Line I was the same of the sam	II
UNIT	1 st ,2 nd ,3 rd (Half)	3 rd (Half),4 th & 5 th Units

SRI BHARATHI ENGINEERING **COLLEGE FOR WOMEN**

Kaikkurchi - 622 303, Pudukkottai Dt.

ASSIGNMET NUMBER	UNIT	ASSIGNMENT QUESTIONS/TOPIC	DEADLINE
1	I	Problems based on Mechanics	19/12/2022
2	II	Two mark questions in Mechanics	22/12/2022
3	III	Two mark questions in electromagnetic waves	26/12/2022
4	IV	Problems based on Electro Magnetic waves	02/01/2023
5	V	Two mark questions in Laser	11/01/2023
6	VI	Problems in Basic Quantum Mechanics	20/01/2023
7	VII	Problems in Basic Quantum Mechanics	27/01/2023
8	VIII	Problems based on ordinary differential equations	07/02/2023
9	IX	Finite square potential well	13/02/2023
10	X	Two marks in Applied Quantum mechanics	10/03/2023

PREPARED BY

2. Selt 11/11/22

Mrs.R.SARATHA, AP/PHYSICS

VERIFIED BY

R. Schulin.

HOD

HOD / S&H

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

KAIKKURICHI PUDUKKOTTAI - 622 303.

APPROVED BY

11/11/2

Dr. S.THILAGAVATHI ME., Ph.D.,

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkotlai Dt.

PRINCIPAL PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI - 622 303. PUDUKKOTTAI DISTRICT

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25) Kaikkurichi, Pudukkottai, Tamil Nadu - 622 303, India

DEPARTMENT OF SCIENCE & HUMANITIES

Ref: SBECW/ S&H/ Course committee meeting / EP/ 2022-2023 (Odd)

DATE: 11.11.2022

COURSE COMMITTEE MEETING-PH3151-ENGINEERING PHYSICS

ACADEMIC YEAR/SEM: 2022-2023/ODD

PROGRAM : BE-CSE

REGULATION: 2021

SEM

: 01

DATE OF MEETING : 11.11.2022 TIME

: 11.00AM

VENUE

: S&H Dept. HoD Cabin

Members Present

Table 1 Course committee members

S.No.	Name of the faculty & Designation, Program	Sem/Sec/Program	Signature
1.	Mrs. R.Saratha, HoD/S&H - Course coordinator	I SEM/A/ CSE	R. Sch
2.	Mrs.T.Renugadevi, ASP/ECE&EEE	I SEM/C/ ECE&EEE	T.Ri
3.	Mrs.V.Vinojini, ASP/CIVIL	I SEM/B/ CIVIL	V. Vnoje

HOD welcomed all the members present

1. Content of syllabus, unit wise discussed. Nature of qualitative, quantitative, problematic, theoretical concepts etc. have been discussed

Table.2 Allocation of Period

Number of period per unit	Total number of Peroids
09	45

- 2. Vision and mission of the college, department discussed. POs, PEOs, PSOs discussed.
- 3. Course outcomes defined for each units, considering learning outcomes.

Table.3 Course Outcomes

CO	Course Outcomes	POs	PSOs
C103.1	Acknowledge the importance of mechanics	1,2,3,4,6,10,12	-
C103.2	Express their knowledge in electromagnetic waves.	1,2,3,4,6,10,12	-
C103.3	Demonstrate a strong foundational knowledge in oscillations.	1,2,3,4,6,10,12	-
C103.4	Establish a strong foundational knowledge in fibre optics and laser.	1,2,3,4,6,10,12	-
C103.5	Comprehend the importance of quantum physics.	1,2,3,4,6,10,12	-
C103.6	Comprehend and apply quantum mechanical principles towards the formation of energybands.	1,2,3,4,6,10,12	-

Mapping of COs with POs and PSOs is done with suitable correlation levels(1 for low, 2 for medium, 3 for high,"-" for no correlation, before content beyond syllabus)

Table.4 Mapping of COs, C, PSOs with POs- before CBS.

	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C103.1	3	3	2	2	100-100	1	10 -0.1	soc-en	tn s ind	gişle s	req a q)	1/0	21 . C	-
	C103.2	3	3	2	2	- 1.0	इ बीव्य	162- ju	IK-, P	po 4 935	41	2152.4	11	127 -	-
	C103.3	3	3	2	2	664.bs	190	l est e	(VETO	a Zas	1111	etre bres	ds <u>l</u> ead	122- 1	-
L	C103.4	3	3	2	2	- 3	1	-	-	- 3	110	12051 3	aultan	180 - <u>-</u>	-
	C103.5	3	3	2	2	-	1	-	-	-	1	-	1	-	-
	C103.6	3	3	2	2	x - /	1	-	-	- 3	1	9 -	1	-	-
L	C103	3	3	2	7	-5	1,	-	-	- 7	1	in Pari	1	7 -	-

5. Identification of content beyond syllabus curricular gaps are identified considering industry needs, employers feedback, alumni feedback, government policy on industrialization, new investments by private/

Dr. S.THILAGAVATH M.E., Ph.D., PRINCIPAL

SRI BHARATHI ENGINEERING **COLLEGE FOR WOMEN** Kaikkurchi - 622 303, Pudukkottai Dt.

public sectors, societal needs and level of correlation of COs with POs and PSOs. Accordingly the details of CBS added and its correlation is given below.

Table.5 Identification of content beyond syllabus

Content beyond syllabus added	POs strengthened/Vacant filled	CO/Unit
Kinematics	PO7(1) Vacant filled	C103. 1/ I&I

6. Mapping of COs with POs, PSOs- after CBS.

Table.6	Mapp	oing of	COs,	C, PSO	s with	POs-	after	CBS.
	1							

				tio i o	Tirepp	1115 01	000,	0,10						
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C103.1	3	3	2	2	-	1	18	-	-	1	-	1	-	-
C103.2	3	3	2	2	C. 26	1	AA3)	D. Tay	341A	1	-	1	-	-
C103.3	3	3	2	2	-	1	-	-	-	1		1	-	-
C103.4	3	3	2	2	-	1	-	-	-	1	303	1	IT_FA	200
C103.5	3	3	2	2	-	1	-	-	-	1	-	1	1201 1 20	
C103.6	3	3	2	2	-	1	-	-	-	1	-	1		***
C103	3	3	2	2		1	X X	- (-Ta-3	-	1	-	1	-	-

- 7. Content beyond syllabus is thus identified based on the above. Plan for handling of CBS by internal/external resource person/ industrial visits are decided. This will be included in the class log book.
- 8. Lecture schedule should be prepared unit wise, as in the syllabus. Number of periods per unit and total number of periods planned should not be less than, periods allotted in the syllabus of Anna University.
- 9. Plan for additional Periods for Cycle tests, CBS, Seminar, Quiz etc are to be incorporated in the lecture schedule. These periods are added exclusive of number of periods prescribed in the syllabus.
- 10. Plan for at least three assignments (with level of correlation), seminar topic, quiz questions discussed.
- 11. Bright students and slow learners are to be identified, immediately after Cycle test I. such students may be counselled suitably and the evidence for counselling to be recorded in the attendance cum assessment record. (Sign of students with date and time of counselling, to be strictly recorded and to be attached in the course file).
- 12. For those students secured less than 60% in the Cycle test, Makeup test should be conducted. Correspondingly root cause analysis for reasons of failure, corrective and preventive action, and follow up action taken should be filed properly.
- 13. Contents of course file to be reviewed periodically.
- 14. Lecture schedule, assignment questions, tutorial questions, course materials, AU questions (at least 5) should be supplied within one week after the commencement of classes.
- 15. Course material should be uploaded in the college website for student's reference.
- 16. Discrepancy in question paper, if any to be informed to the controller of examinations through web portal entry, after getting approval from the HoD & the Principal. Critically asked questions, if any to be discussed with the students of the next batch.
- 17. Immediately after the publication of the results, analysis are to be carried out and follow up action to be taken for the failures.
- 18. Cycle test question papers should be set as per the norms of the college, incorporating marks for learning outcomes and course outcomes. Common question papers should be set.
- 19. Certificate courses /guest lectures may be planned inviting experts from industry/higher learning institutions.
- 20. After Cycle test, an objective type tests may be conducted (3 times in a semester-30 minutes duration-maximum 10 questions). Questions asked in GATE, TANCET, IES or any other Competitive examination can be taken as a reference. This is to facilitate the bright students to prepare for higher level of thinking and to enhance placement and higher studies opportunities.
- 21. Cycle test papers, assignment papers or any other papers submitted by the students, should be returned to the students within 5 days after correction. Sample paper should be suitably filed.
- 22. Long absentees of students if any to be informed to the parents through class coordinator, if such students attendance less than 75%.

Course Coordinator

Dr. S.THILAGAVATHI M.E., Ph.D.,

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt. HOD/S&H

2. Sch

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI

PUDUKKOTTAI - 622 303.

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25) Kaikkurichi, Pudukkottai, Tamil Nadu - 622 303, India

DEPARTMENT OF SCIENCE & HUMANITIES

Identification of Curricular Gap & Content Beyond Syllabus(CBS)

Name of the Faculty: Mrs.R.SARATHA

Course Code & Name: PH3151 & EP

Degree & Program: B.E/CSE Semester & Section: I / A Academic Year:2022-2023/ODD

I. Mapping of Course Outcomes with POs & PSOs. (Before CBS)

Table.1 Mapping of COs, C, PSOs with POs - before CBS.

Course	PO1	PO2	PO3	PO4		PO6	PO7				PO11		PSO1	PSO2
C103.1	3	3	2	1	-	1	-	-	-	1	-	1	-	-
C103.2	3	3	2	1	-	1	-	-	-	1	-	1		_
C103.3	3	3	2	1	-	1	-	-	-	1	-	1	_	-
C103.4	3	3	2	1	-	1	-	-	-	1	-	1	-	_
C103.5	3	. 3	2	1	-	1	-	_	-	1	-	1	-	_
C103.6	3	3	2	1	-	1	-	-	-	1	-	1		-
C103	3	3	2	1		1	-	-	-	1		1	-	-

II. Identification of content beyond syllabus.

Table.2 Identification of content beyond syllabus

Details of Content Beyond Syllabus(CBS) added	POs strengthened/ vacant filled	CO/Unit
KINEMATICS	PO7(1) Vacant filled	C103.1 /I

III. Mapping of Course Outcomes with POs & PSOs. (After CBS)

Table 3 Manning of COs C PSOs with POs- after CRS

			1.0	tore.5	mapp	ing or	COS,	C, 1 3	OS WII	III PUS-	anter	LDS.		
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C103.1	3	3	2	2	-	1	1*	-	-	1	-	1	-	-
C103.2	3	3	2	2	-	1	-	-	-	1	-	1 .	-	-
C103.3	3	3	2	2	-	1	-		-	1	-	1	-	-
C103.4	3	3	2	2	-	1	-	-	-	1 .	-	1	-	-
C103.5	3	3	2	2	-	1	-	-	-	1	-	1	-	
C103.6	3	3	2	2	-	1	-	-	-	1	-	1	-	-
C103	3	3	2	2	-	1	-	-	-	1	-	1	-	-

Dr. S.THILAGAVATHI M.E., Ph.D.

PRINCIPAL

SRI BHARATHI ENGINEERING **COLLEGE FOR WOMEN** Kaikkurchi - 622 303, Pudukkottai Dt.

HOD / S&H SRI BHARATHI ENGINEERING **COLLEGE FOR WOMEN** KA!KKURICH! PUDUKKOTTAI - 622 303.

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25) Kaikkurichi, Pudukkottai, Tamil Nadu - 622 303, India

DEPARTMENT OF SCIENCE AND HUMANITIES

Assignment Question Paper

	Assignment – 07		Date of Issue:	25.01.2023	Marks	10
Course code	PH 3151	Course Title	Engineering Physi	ics		
Year	Ι	Semester/Section	I/A	Date of Submission	n: 27.01.2	2023

Q.No	Questions	СО
1	In a Compton scattering experiment, the incident photons have a wavelength of 3×10^{-10} . Calculate the wavelength of scattered photons if they are viewed at an angle of 60° to the direction of incidence.	C103.4
2	Find the change in wavelength of an X-rays photon when it is scattered through an angle of 135° by a free electron.(h = 6.635×10^{-34} Js; $m_0 = 9.1 \times 10^{-31}$ Kg; $C = 3 \times 10^8$ m/s)	C103.4
3.	X-rays of wavelength 0.1 nm are scattered from a carbon block. Find the wavelength of the scattered beam in the direction making an angle of 90° with the incident beam. ($m_0 = 9.1 \times 10^{-31}$ Kg).	C103.4
4.	An electron is accelerated by a potential difference of 150V. What is the wavelength of that electron wave?	C103.4
5.	Calculate the de-Broglie wavelength of an electron of energy 100ev.	C103.4
6.	An electron at rest is accelerated through a potential of 5000V. Calculate the debroglie wavelength of matter wave associated with it.	C103.4
7.	Calculate the de-Broglie wavelength associated with a proton moving with a velocity equal to $\frac{1}{20}^{th}$ of the velocity of light. Mass of proton = 1.675×10^{-27} kg.	C103.4

Name and Signature of the Faculty Incharge

2.8at

HOD / S&H **SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN**

KAIKKURICHI PUDUKKOTTAI - 622 303,

Dr. S.THILAGAVATHI M.E., Ph.D.,

PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

Kaikkurchi - 622 303, Pudukkottai Dt.

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25) Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India

DEPARTMENT OF SCIENCE & HUMANITIES

Assignment Answer Sheet

Name of the Student: 912622104020

AU Register Number: S.JEEVITHA

	Assignment – 07		Date of Issue:	25.01.2023 N	larks	10
Course code	PH3151	Course Title	Engineering Physi	cs		
Year	I	Semester/Section	I/ A	Date of Submission:	27.01.202	23

Q.No	Questions	СО
1	In a Compton scattering experiment, the incident photons have a wavelength of 3×10^{-10} . Calculate the wavelength of scattered photons if they are viewed at an angle of 60° to the direction of incidence.	C103.4
2	Find the change in wavelength of an X-rays photon when it is scattered through an angle of 135° by a free electron.(h = 6.635×10^{-34} Js; $m_0 = 9.1 \times 10^{-31}$ Kg; $C = 3 \times 10^8$ m/s)	C103.4
3.	X-rays of wavelength 0.1 nm are scattered from a carbon block. Find the wavelength of the scattered beam in the direction making an angle of 90° with the incident beam. ($m_0 = 9.1 \times 10^{-31}$ Kg).	C103.4
4.	An electron is accelerated by a potential difference of 150V. What is the wavelength of that electron wave?	C103.4
5.	Calculate the de-Broglie wavelength of an electron of energy 100ev.	C103.4
6.	An electron at rest is accelerated through a potential of 5000V. Calculate the debroglie wavelength of matter wave associated with it.	C103.4
7.	Calculate the de-Broglie wavelength associated with a proton moving with a velocity equal to $\frac{1}{20}^{th}$ of the velocity of light. Mass of proton = 1.675×10^{-27} kg.	C103.4

Dr. S.THILAGAVATHI M.E., Ph.D.

PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303, Pudukkoitai Dt.

Mark Allocation

Rubrics	Marks Allocated	Marks obtained
Content Quality	6	6
Presentation Quality	2	1
Timely submission	2	2
Total marks	10	09

Name and Signature of the Faculty Incharge

HoD/S&H

HOD / S&H

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI

PUDUKKOTTÁI - 622 303,

Dr. S.THILAGAVATH M.E., Ph.D.,
PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Di.

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25) Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India

			I	QA(C Acader	nic Au	ıdit !	For	m				
			ACAD		YEAR: 202		ODD	SEN	MES	ΓER			
Nan	ne of Depart	ment:	CSE	-	/ Sem / Sec:	- 1-1	/A 1	No. of	f Stud	ents Re	gistered: 4	0	
Deta	ails of Exam	ination :	CT -1 /	CT-2	/ CT -3 / Model Test								
S.No.	Course Code		List of Reg.No Verified		Course Log Book Verified (Y / N)	Course File Verified (Y / N)	No of students Passed	No of Absentees	No of Failures	Pass %	Remarks		
1	HS2151	9126	22101	1063	Y	Y	24		16	60	_		
2	MAZISI	91262	221040	010	У	Y	30		10	75	_		
3	CY3151	9126	22104	029	y	У	36		3	92	_		
4	PH3151	9126	221040	020	У	Y	29		11	72.5			
5	GEZISI	91262	221040	750	Y	Y	31		09	77.5			
					Verif	fied by					-		
Ext	ernal Memb	er Name a	and Signat	ture:	G. SUNA	PRY	2		h	- Cfr			
	ernal Membe	er Name a	nd Signat	ure:	TSHW.	ARYA	1. 1	1 (18	hu	fa.T.	1	
<u>Overa</u>	Internal Member Name and Signature: ISHWARYA. M of July. To verall Remarks: Try to improve the pass percentage in H8 2151 Subject.												
	Q. X	214			5 Just	1/2/2	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\mathcal{N}^{\sim}		

HOD / S&H
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
KAIKKURICHI
PUDUKKOTTAI - 622 303.

HoD/S&H

Dr. S.THILAGAVATHI M.E., Ph.D.,
PRINCIPAL

SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303 Pudukhana

IQAC Co-ordinator

Principal

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI - 622 303. PUDUKKOTTAI DISTRICT

(Approved by AICTE, Affiliated to Anna University, Chennai, India)
Kaikkurichi, Pudukkottai – 622 303
DEPARTMENT OF SCIENCE AND HUMANITIES

SUBJECT CODE &TITLE: PH3151 & Engineering Physics

YEAR/SEM
SECTION/PRANCH

: I/I

SECTION/BRANCH

:A/CSE

STUDENT FEEDBACK ON FACULTY

s.no.	DESCRIPTION	SCORED OUT OF 4	SCORED OUT OF 100
1.	Syllabus coverage as prescribed by university	3.4	85
2.	Technical knowledge of the teacher	3.3	82.5
3.	Teacher's communication skill	3.4	85
4.	Regularity in taking classes	3.4	85
5.	Helping the students in conducting the experiment through set of instruction and demonstrations	3.3	82.5
6.	Tendency of inviting opinion and question on subject matter from students	3.5	87.5
7.	Knowledge of the Teacher in latest development of field	3.3	82.5
8.	Perfectness of valuation	3.3	82.5
	OVERALL SCORE	3.3625	84.0625

Dr. S.THILAGAVATHI M.E., Ph.D., PRINCIPAL

SRIBHARATHI ENGINEF COLLEGE FOR WOM.

Kaikkurchi - 622 303, Pudukkottai Di

SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 822 303, Puzukkottai Ot

REPORT SHEET

SI.NO	REG.NO	NAME	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
				3.87			HOME	9.90	OT	7.7
. 1	912622104001	ABINAYA.E	4	3	3	4	3	4	3	3
2	912622104002	ABIRAMI.C	3	3	3	3	3	4	3	4
3	912622104003	AJITHA.M	4	3	4	3	3	3	4	4
4	912622104004	AKSHAYA.M	3	3	3	3	3	4	3	4
5	912622104005	ANANTHI.K	4	3	3	4	3	4	3	3
6	912622104006	ASIYA.A	3	3	4	3	2	4	3	3
7	912622104007	ATCHAYA.B	4	4	3	3	3	4	3	4
8	912622104008	BARJUSHFATHIMA.P	3	3	3	4	4	4	3	4
9	912622104009	BAVADHARANI.S	3	3	4	4	4	3	3	3
10	912622104010	DEVADHARSHINI.P	4	3	3	3	4	3	4	3
11	912622104011	DEVI SRI.R	3	3	4	3	4	4	4	3
12	912622104012	DHANALAKSHMI.G	3	3	4	3	4	3	4	4
13	912622104013	DHANASRI.E	4	3	4	4	4	3	3	3
14	912622104014	FEMINA.M	3	4	3	3	3	4	4	3
15	912622104015	GOMATHI.P	4	4	4	4	3	3	3	4
16	912622104016	GOPIKA SRI.Y	3	4	4	4	3	3	4	3
17	912622104017	INBA.M	4	4	3	3	3	4	4	3
18	912622104018	ISHWARYA.S	4	3	4	3	4	3	4	3
19	912622104019	JAMEELA.M.A	3	3	3	3	2	3	3	3
20	912622104020	JEEVITHA.S	3	4	3	3	4	3	3	3
21	912622104021	KAVIPRIYA.S	3	3	4	4	3	3	3	4
22	912622104022	KAVIYAPRIYA.P	4	4	3	3	4	4	3	4
23	912622104023	KAVIYARASI.M	3	4	3	3	4	3	3	4
24	912622104024	KEERTHANA.S (9.10.2004)	4	4	4	4	3	4	3	4
25	912622104025	KEERTHANA.S (29.8.2005)	3	4	3	4	3	4	3	3
26	912622104026	KRISHNAVENI.C	3	4	3	3	4	3	4	2
27	912622104027	LAKSHMI PRIYA.D	4	4	4	3	3	3	3	3
28	912622104028	LALITHAMBIGAI.K	3	3	3	3	4	4	4	3
29	912622104029	LATHIKA.G	3	3	4	4	3	3	4	3
30	912622104030	MADHUMITHRA.D	3	3	3	4	3	3	3	2
31	912622104031	MAHALAKSHMI.K	4	3	3	4	4	3	4	3
32	912622104032	MANIMEGALAI.V	3	3	3	3	4	3	3	4
33	912622104033	MANJULA.R	3	3	3	4	3	4	3	4
34	912622104034	MEENAKUMARI.K	3	4	3	4	3	4	3	3
35	912622104035	NANDHINI PRIYA.N	4	3	3	3	3	4	3	3
36	912622104036	POORANI.S A	4	3	3	4	3	4	3	3
37	912622104037	PRADEEPA.P	3	3	3	3	3	4	3	4

Dr. S.THILAGAVATHEM.E., Ph.D.,

PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303, Pudukkottai Dt.

38	912622104038	PRIYADARSHINI.K	3	3	4	3	3	4	3	3
39	912622104039	PRIYADHARSHINI.D	3	3	4	3	4	3	4	3
40	912622104040	ROHINI.N	4	3	4	3	3	3	3	3
			3.4	3.3	3.4	3.4	3.3	3.5	3.3	3.3
			85	82.5	85	85	82.5	87.5	82.5	82.5

EXCELLENT	VERY GOOD	GOOD	AVERAGE	POOR
4	3	2	1	0

Faculty Incharge

Dr. S.THILAGAVATHI M.E., Ph.D.,

PRINCIPAL SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt.

HOD / S&H **SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN** KAIKKURICHE PUDUKKOTTÁI - 622 303.

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI, PUDUKKOTTAI – 622 303.

CIRCULAR

Date: 13.02.2023

The Second cycle test will be conducted from 23.02.2023 to 28.02.2023 for the I semester (I year) students.

The following instructions are to be followed by the faculty members.

- Total marks for which the question paper to be set will be for 100 marks. (PART A 10X2=20 PART B 5X16=80).
- It is responsibility of the faculty members to prepare two set of question papers and take the Xerox copies of the required number and it should be handed over to the Exam cell Coordinators Ms. G. Gayathri AP/CIVIL, Mrs. G. Sugapriya AP/CSE along with answer key on or before 20.02.2023.
- The Exam Coordinator (exam cell) is requested to make necessary arrangements (hall arrangements, invigilation duty etc.,) for conducting the test.
- Faculty members are requested to handover the valued answer scripts to the students on or before 01.03.2023 and the class in-charges are requested to send the consolidated mark sheet along with the attendance percentage (from 11th November 2022 to 28th February 2023) to the parents on or before 03.03.2023.

PRINCIPAL

Cc:

- All HoD's CIVIL/CSE/EEE/ECE
- All faculty
- **IQAC** Co-ordinator
- Exam cell
- Office file

Kaikkurchi - 622 303, Pudukkottai Dt.

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI, PUDUKKOTTAI – 622 303.

CIRCULAR

Date: 13.02.2023

The Second cycle test will be conducted from 23.02.2023 to 28.02.2023 for the I semester (I year) B.E students for 100 marks as per the time table given below. Students are directed to prepare well and score good marks.

Date	12.45 pm -03.45 pm (AN)
23.02.2023	CY3151-Engineering Chemistry
24.02.2023	PH3151-Engineering Physics
25.02.2023	GE3151-Problem Solving and Python Programming
27.02.2023	MA3151-Matrices and Calculus
28.02.2023	HS3151-Professional English I

Cc:

• All I year B.E Classes

All faculty

• IQAC Co-ordinator

• Exam cell

Notice Board

Office file

PRINCIPAL

(3/02/23

Dr. S.THILAGAVATHI M.E.,Ph.D.
PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt.

Register Number:							
Register Number.			- 1				

(Approved by AICTE, New Delhi and affiliated to Anna University, Chennai) Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India

	Cycle Test	- II	Date/Session	24.02.2023 / AN	Marks	100					
Course co	de PH3151	Course Title	ENGINEERIN	G PHYSICS							
Regulation	2021	Duration	3 hours	Academic Ye	ear 20)22 - 2023					
Year	I	Semester	I	Department		All Branches					
COURSE	OUTCOMES										
C103.1	Acknowledge the importa	nce of mechanics.									
C103.2	Express their knowledge	in electromagnetic waves.									
C103.3	Demonstrate a strong four	ndational knowledge in osci	llations, optics and lase	ers.							
C103.4	Establish a strong foundate	ional knowledge in fibre op	tics and laser								
C103.5	Comprehend the importar	nce of quantum physics.									
C103.6	Comprehend and apply qu	Comprehend and apply quantum mechanical principles towards the formation of energy bands.									

Q.No.	Question	CO	BTS
	PART A		
	(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)		
1	List out the conditions to be satisfied for total internal reflection?	C103.3	K1
2	What is meant by Doppler effect?	C103.3	K2
3	What is the physical significance of a wave function?	C103.5	K2
4	What is meant by photon? Give any two properties.	C103.5	K2
5	What is meant by Degenerate and non-degenerate.	C103.5	K2
6	What is meant by correspondence principle? Give example.	C103.5	K2
7	What do you understand by the term Transmission Co-efficient?	C103.6	K2
8	What is meant by Quantum tunneling?	C103.6	K2
9	Give any two applications of STM.	C103.6	K1
10	What is the principle used in Resonant tunneling diode?	C103.6	K2
	PART B		
	(Answer all the Questions $5 \times 16 = 80$ Marks)		
11a	What is meant by simple harmonic motion? Arrive at the differential equation for a	C103.3	K2
	particle executing SHM		
	OR		
11b	Describe the construction and working of Michelson's Interferometer.	C103.3	K2
12a	Explain Compton effect and derive an expression for the wavelength of	C103.5	K2
	Scattered photon.		
	OR		
12b	Explain the Schrödinger wave equation to one dimensional potential well	C103.5	K2
13a	Derive Schrödinger's time dependent and time independent equations.	C103.5	K3
	OR		
13b	Derive the Eigen values and Eigen functions for a 1-D potential box	C103.5	K3
14a	Derive the Eigen values and Eigen functions for a 3-D potential box	C103.6	K3
	OR		113
14b	Describe the principle, construction and working of a scanning tunneling microscope	C103.6	K2
15a	Describe the barrier penetration process and quantum tunneling of an electron.	C103.6	K3
	OR	C103.0	13
15b	Write a brief note on Bloch's theorem for particles in a periodic potential and	C102.6	IV2
150	Kronig penney model	C103.6	K3
	Thoms being honor		

Course Faculty 2/28 (Name Sign / Date)

Dr. S.THILAGAVATHI M.E., Ph.D.,)
PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN

Kaikkurchi - 622 303, Pudukkottai Dt.

R. SARATHA (Name/Sign/Date)

SRI BHARATAI ENGINEERING COLLEGE FOR WOMEN B.E-DEGREE EXAMINATION, FEBRUARY-2023 CYCLE TEST-II FIRST SEMESTER PH3151 - ENGINEERING PHYOLD Duration: 3.00hrs Answerkey Marks: 100 D Listout the conditions to be satisfied for total internal reflection? (1) Light should travel from denser medium to rarer medium (ii) The angle of incidence (4) at the interface should be greater than the critical angle (de). ie, \$>40 (iii) The refractive index of denser medium (n,) should be greater than the refractive index of rarer medium (n.) ie, n,>n2 2) What is meant by Doppler effect? Doppler Effect The apparent change in frequency (or) Fifth either due to the motion of the source (or) observer Cor) both Is known as Doppler effect 3) what is the physical significance of a wave function? (i) The probability of finding a particle in Space, at any given instant of time is characterised by a function 4(x,y,z), called wave function by a function (vi) It relates the particle and the wave Statistically (iii) It gives the information about the particle behaviour (iv) It is a Complex quantity COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt.

5) I WI represents the probability density of the Particle, which is read and positive what is meant by photon? Give any two properties. . Definition: Definition. Photors are discrete energy values in the form of small quantas of definite frequency (or) wavelength Properties: 1. They do not have any charge and they will not ionise 2. The energy and momentum of the photon 15 given by E=hvand P=mc where v-> dequency, m-mass of the photon C-> Velocity of Photon h-> plank's Constant what is meant by Degenerate and Iron-degenerate.

(i) Degeneracy: It is For several Combination of quantum numbers we have some energy eigen value but different eigen functions. Such states and energy Nevels are collect pegenerate state. The three combinations of guartum rumbers (112), (121), and (211), which gives same eigen value but different eigen functions are called Degenerate (or) 3 fold degenerate state (11) Non - Degeneracy: For Various combinations of quantum number it we have same energy value and same (one) eigen function then such states and energy levels are called Non-Degenerate state. Example For n=2n=2n=2ne have E222 Dr. SZHILAGAVA COLLEGE FOR WOMEN

2172 Sin 2172 SkajkRufch - 622 303, Fudukkottai Dt.

Illy for Various values of in. The energy eigen values of an harmonic ascillator are plotted

7/2 has 1/2

b) Describe the construction and working of Michelson's Interferometer.

Michelson's Interferometer and types of Frienges Interferometers

The phenomenon of Interference has been used to test the flames of surfaces and also used to reduce the reflecting power of the lens and prisms. Instruments based on the principle of interference of Light-esse known on interferometers

Michelson designed an interferometer
to determine the wavelength of the light,
resolution of the spectral line and the thickness
of the thin transporant materials.

Principle:

The amplitude of light beamfroma

Source is divided into two parts of equal
intensitied by perstral reflection and transmission.
These beams are then sent in two directions ab
right angles and are brought together after
they suffer reflections from plane mirrors to
produce interference tringes

Construction

It consists of two hop blandard in EPD.

It consists of two hop blandard in EPD.

It consists of two hop blandard in EPD.

PRODUCE FOR WOMEN

Plane mirror > M, and M/2 which address in Might shail.

angles to each other. These two equally optically Plat glass plates Grand Ge of same thickness are made up of same material placed parallel to each other. These plates are inclined aban angle of 45 with the mirrors Mand M. The plate Girshalf silvered abthe back So that the incident beam is devided into two beams viz., reflected beamand transmitted beam of equal intensity. The mirrors Mandy. are provided with screws on their backs, so that they can be adjusted exactly perpendicular to each other The mirror Mismounted on a corriage which can be moved forward and backward using the handle 'H'. The distance at which the Mis moved Canbe read with the help of the scale. The interference fringes can be observed in the field of view of the telescope 'T! Working - Light from a monochromatic source sis made parallel with the help of collimating lens L. The light beam is allowed to fall on the Semi solvered glass plate a, Itishe Partly reflected at the back surface of G, and travel towards Mi, i,e., along (Ac) and partly Fransmitted towards M2 Ci, e. Jalonel AB. Thesetwo ray travel along two mutually perpendicular Paths and are reflected back by the mirror Manel Mz. These two ray again meetat glackaikky sollow to the formation of the forma

iv) Alens is then placed between G, and Linsheet and a place mirror is placed between G, and lens normally.

(v) The lens position is adjusted till the image of the hole falls back on the timplate very dose to the hole, hence the light is made as a parallel beam when it leaves the lens.

(vi) It the plane mirror is removed, and if the

(vi) If the plane mirror is removed, and if the beam is seen in the direction of AT. We consee four images of the hole. The mirrors are adjusted till the images coincide the bythe.

(vii) At this stage, it the tin sheet is removed, then the two paths of Light are exactly parallel to each other giving rise to circular fringes in the Addo frien, By tilting mirror M2 slightly, the tringes can be made straight.

12) a) Explain compton effect and derive an expression furthe wavelength of scattered proton.

Compton effect - when a beam of monochramatic radiation such as X-rays - Y-rays eta, of high frequency is allowed to fall on on fine scatterer,

the beam is scattered into two components viz.,

(i) one component having the same freq!,

(or) wowelength as that of the incident radiation,

So called unmodified radiation, and

(ii) The other component having lower frequency (or) higher wavelength comparred to incident radiation, so called modified radiation

This effect of scattering is called Compton
effect
Compton Shift! - When a photon of energy hi offorder
with an electron of a scatterer situation principal the photon
gives its energy to the electron satisfication in the Scattered photon will have legislation in the decayency (of) higher pavels with Compton would not the

The two rays which enter the telescope are originally derived from the Same Single beam, hence they cause the interference fringes in the field to view of the telescope. Hence a path difference can be introduced between the two reflected rays by moving the mirror M.

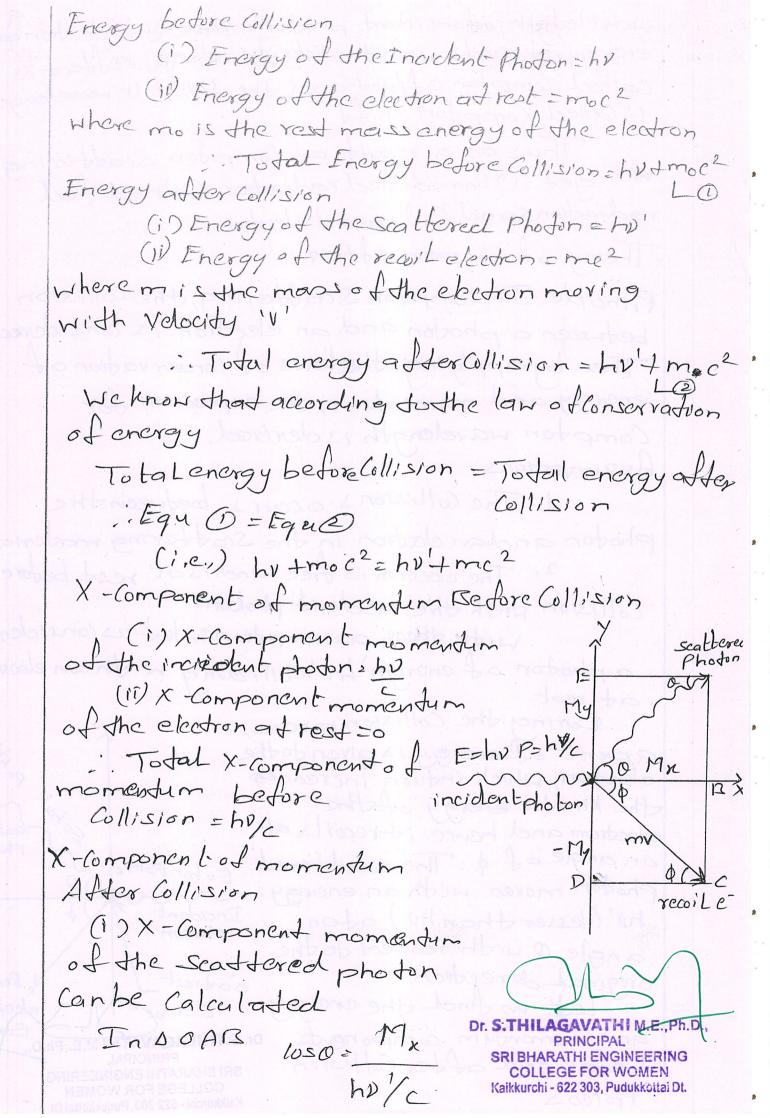
Aray Pc passes three through the glass
Plate G. i.e., 1st through PG and 2nd through Qp,
after reflection from the mirror MI, whereas the ray
PB does not ever passes once through G, even after
reflection from the mirror M2. Thus in the absence
of the glass plate G. the path traced by the
beam between G, M, and G, M2 are not equal.

To equalise the path difference a glass
plate 92 of same thickness and material as
that of 9, is introduced between 9, and M2. So
that they ray pr Hill also pass twice i.e., It
through Ro in glass plate 9, and 2nd through
OR in glass plate 9, at ter reflection from the
mirror M2

Since the glass plate Gzisused to Compensate the posth difference between the two rays; it is called as a compensation plate. Thus the path of the two rays Viz., PR and Pr are made equal.

Adjustments

(i) The distance of the mirrors MandMane adjusted to be nearly equal froma.


(ii) In order to make the incident beam parallel at fin sheet with a small hole is placed infront of some ces.

Jin heet winner of the light from the more adjusted in line with the Contre contressor one and mirror M. and M. an

wavelength of incident photon. Since the electron game energy, it recoils with the velocity iv. This effect is called Compton effect and the shift in wavelength is Called Compton shift. Thus as a result of Compton Scuttering. We get (i) Unmodified radiation (i) Plodified radiation sand (iii) areail electron. Theory of Compton effect. Principle In Compton Scattering, the Collision between a photon and an electron is considered. Then by applying the lows of Conservation of energy and momentum, the expression for Compton wavelength is derived. Hasumptions 1, The Collisions occurs between the photon and an electron in the Scattering material 2, The electron is free and is at rest before Collision with the modernt photon. With these assumptions, let as consider a photon of energh ho' colliding with an electron at rest Darine the Collision process, a part of energy 12 given to the electron, which inturn increases the kinetic energy of the electron and hence it recoils at seabbores Photon an angle of of The scattered Ezho Psho/c photon moves with an encryy Incident ho' (kesser than ho) at an photon angle Q with respect to the original direction. eatrest_ I Recoil Let in find the energy electron and momentum components before and after Collision

Process

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt.

Special Cases Case(i) When 0=0; Co-0=1 i equ(18) becomen which This implies that at a to the scattering is absent and the outcoming radiation has the same werelength (or) frequency as their of the incident radiation. Thus we get the output asa Single peak. Can (ii) when 0290; (050=0 : eq 4(18) becomes b)=b Subthe Values of h, mound a we get DX= 6.625 x 10-34

(9.11 × 10-31)(3×108) (01) DX =0.024249°

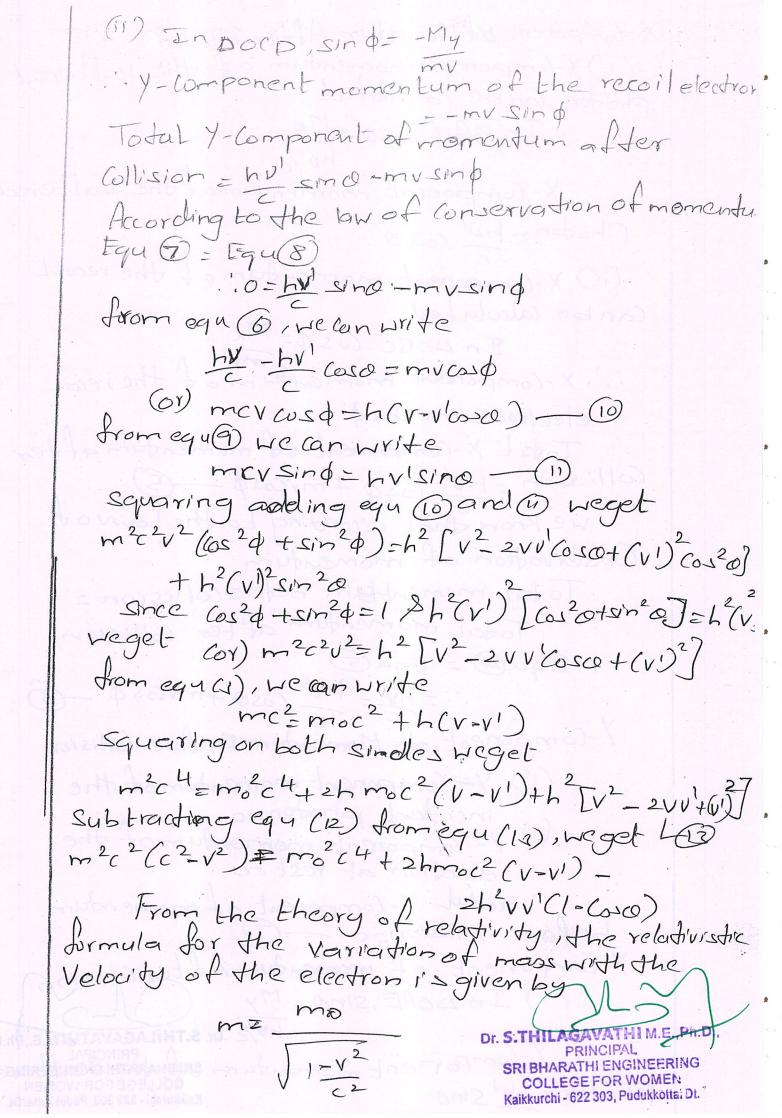
This wavelength is called compton wavelength Case (VII) When 0=180; Cessa = -1 . Fqu (8) becomes bx= h (1-(-1) Sub! the values of h, mo and c weget 6) = 0.04848 A° is found to be man! b) Endain the schrodinger wave equi, to one dimensional potential well Leb as ansider a particle (dectron) of massin' moving along x-axis, enclosed in a ore dimensional (ID) intinibe potential well " the walls are of manite Potential, the persticle does not 1/ V=0/, penetrale out from the potential well. Also, the particle is confined vea electron vers between the length Lof the well vers descriptions with the server and has dastic collisions with the and has dastic collisions
walls. The potential energy HILAGAVATHILLE, Ph.D.

Walls. The potential energy HILAGAVATHILLE, Ph.D.

PRINCIPAL

SRIBHARATHIENGINEERING

Constant & Cambe taken as Zerraikkurchi-622 303 Pagya of the well


Squaring, we get $m^2 = mo^2$ (or) $m^2 = mo^2(2)$ (or) $m^2 = mo^2(2)$ In order to make this equ, similar to LAS of equ(14) multiply it by conboth sides .. reget m2c2(c2-v2)=m0c4_(6) Equating equal: (16) and (14), we can write mo2c4-mo2c4+2hmoc2(V-V')-2h2vV(1-coxe) (OV) 2hmoc2 (v-V1) = 2h2vv ((+ COJO) (or) $\frac{V-V'}{VV'} = \frac{h}{m_0c^2} (1-(0.50))$ (01) V - V1 = h (1-05-0) (or) 1 -1 = h (1-coxo) x, both sides by c'weget C-C - he (1-00) : X=C &X=C we can withe equ (17) as 1-2 = 1-(1-00) (01) Change in wavelength DX = h (1-600) -(18) Equ (18) represents the shift inwardingth, i.e., compton shaft-which is independent of the incident radiation as well as the nature of the Scattering Substance Scattering substance

Scattering substance

Shift purely depends on the an stierate women

Kaikturchi 522 202 Buttlement

X-Component of Momentum After Collesion (1) X-Component momentum of the scattered photon Canbe calculated In OAR COSO = Mx X-Component momentum of the scattered Photon - hill cosa (ii) X-Component momentum of the recoil Can be calculated In DOBC CUS &= Mx in X-Component momentum of the recoil electron = mv Coso Total X-Component of momentum after Collision = hv Coso + mvcoso - 5)
we know that according to the Louve of Conservation of momentum Total momentium before collision = Total momentum after collision Equ (4) = Equ (5) := hy = hv (uso +mvas) - 6 Y-Component of Momentum Before Collision (1) Y= Component momentum of the (i) Y-Comporent memendum of the electron at rest =0 . Total Y-Component of momentum before collision=0 -0 Y-Component of momentum After Cyllisian (i) In DOAE, SIND My Y-Component momentum salehannen Encourer Bringipal / College FOR WOMEN Photon = hu'sma Kaikkurchi - 622 303, Pudukkottai Dt.

Outside the wall sonthe wall of the well, 15 the REOJEISON. Invide the well the potential energ (v) of the e is zero the boundary anditron as V(x)=owhenoLxL1 V(x)=0 wheno2x >1 the particle cannot exist outside the well the wave fun/: 4=0 when 6>x2l To find the wave fun! of the particle within the well of length 'l', let us consider the Schrödinger andimensional time independent more equ (i.c) Jx2 +2m [E-v] 4=0 Since the potential energy inside the well is O'(V=0) ! only Kinetic energy of ites afrece fore a free particle $\frac{A^{2}y}{dx^{2}} + \frac{2m}{t^{2}} = y = 0 - 0 \quad \frac{d^{2}y}{dx^{2}} + k^{2}y = 0 - 0$ $= k^{2} = 2mE$ $= \frac{1}{k^{2}} = 1$ The Solution of egy (1) 4(x) = Asinkn+1062KK ASR-sarbitary Constants. Boundary conditions in ortaco, P.E = V=00 1. 4(x)=0 0 - Asino + Blaso Boundary Condition (i) at x=1 P.EV-00 - 4(x)-0 C=AsInk & +Blosk& O-Asinkil A to sinkle we know Sinni PRINCIPAL SRIBHARATHIENGIN Lancton Haikkurdine 2013 Podukkation AL So Klinn Kini

Normalisation of the wave function:

Normalisation: It is the process by which the probability (p) of Anding the particle (e-) inside the well can be done

Total propability (P) is equal to Imeans, there is a particle inside the well.

The probability

$$P = \int_{1}^{1} |\Psi|^{2} dx = 1 \quad \Psi = A \sin n \pi x$$

$$P = \int_{2}^{1} A^{2} \sin^{2} n \pi x \, dx = 1 \quad (\text{or)} \quad A^{2} \int_{0}^{1} \left[1 - 6 \sin n \pi x / x \right] \, dx = 1$$

$$A^{2} \left[\frac{x}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{1}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

$$A^{2} \left[\frac{1}{2} - \frac{y}{2} \frac{\sin 2 n \pi x / x}{2 n \pi / x} \right] = 1$$

Then the normalised wave egu 1) $Y_n = \sqrt{\frac{2}{2}} \sin \frac{n\pi x}{2}$

(a) Perive Schrodinger's time dependent and time independent aquations.

Schrodinger time dependent wave equation

Aparticle can be behaved as a view only under motion

 $E=V+\frac{1}{2}mv^2$ (or) $E=V'+\frac{1}{2}\frac{m^2v^2}{m}$

(-: P=mv) E=V+P²
(1) E (-SRYBBARATHLENG NEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt.

Acc/: to classical mechanics, if x'is the position of the particle moving with the Velocity v; then the displacement of the particle at anytime : L'isgiren by Y=Ae-iw(t-x/1) w= Angular frequency Illy, in Quantum mechanics the wave fun 4(x,y,z,t) represents position (x,y,z) sofa moving particle atanytime't' and is given by 4 (x, y, 2, E) = A e-iw (E-2/v) 4(x,y,z,t)=Ae-2111 (Vt-VX) E=hV E=N 1. V= 1/2 - 1/2 4(x,y,z,E)=Ae-201 (EE-x) P: momentum Ash = h Y(x,y,z,t) = A0-271 (Et-Px) 4(x,y,2,t)= Ae-20 (Et-Pu) (t=h) 4(x, y, 2, E)= Ae-1/2(Et-Pa)differentiating the above equ paritore'

Dx = Ae-i/th (Et-Px) 1P

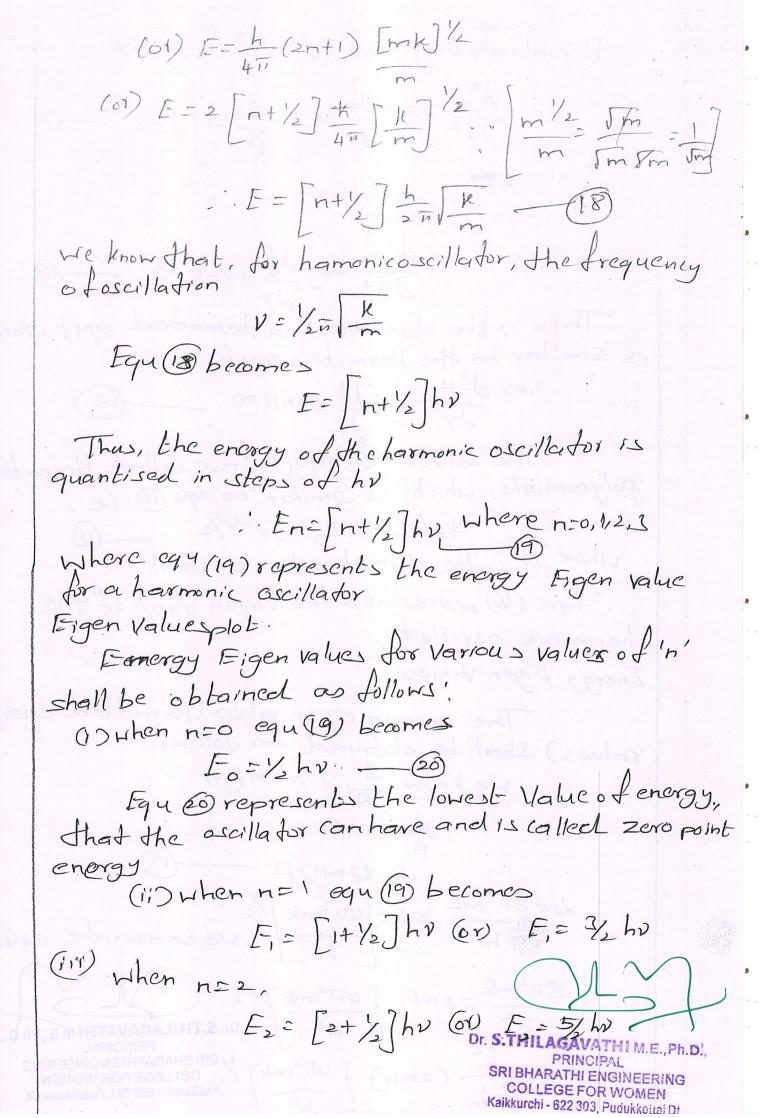
to 24 = Ae-i/t (Et-Pr) (12 p2) P4 = - t 2 24 di Aferen trading equa wirito t' 24 - Ae-1/t (Et-Pa) [-iEDr. S.THILAGAVATAI M.E., Ph.D.,
The principal sribharathi engineering sribharathi engineering $\frac{1}{100} \frac{\partial U}{\partial E} = \frac{4(x,y,2)}{(x,y,2)} \frac{1}{(x,y,2)} \frac{1}{(x,y,2$

it d 4= [v-ti d | 4=0 this is the schrodinger time dependent egu in one dimension For 3-dimension its du = [v-ti2 v2 4=0 EyeHY E>140 H-hamiltonian operator H= 1-43 05 Schrodinger Time independent wave equ. Time dependent wave function Y(X,Y,Z,E)=Ae-1/th(Et-Px) Y(x,y,z,t)=Ae-iEtherPx/th 4(x14121t)=A4e-iEt/t (4=eiRe/t) differentiate theegu & reget 24 = A4e -iFt/th (-Et) 24 = Ae -iEt/h 24 , 24 = Ae -iEt/h24

Dx Dx2 schrodinger time dependent wave equ. 15 1 th 24 = V4-th 2 de - 6 subthe differentiate equs in equil weget 24 + 2m [E4-V4] =0 It is one dimensional Schrodinger time independent 7°4= 2m [E-V]4=0-)3-D schrodingertime P.F.V=0 independent wave Free particle P.E V=0 <u>θ²</u> + 2m E 400 (ον) σ² ψ+2m E 400 (OY) Dr. S.THILAGAVATHI M.E., Ph.D. SRI BHARATHI ENGINEERING

COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkotlai Dt. b) perive the Figen Values and Eigenfunctions for a 3-Protential box In a three dimensional box there are three quantum numbers nx, ny, and no Corresponding the three Co-ordinate anis xy 22 respy. Boundary Conditions Interence V(x,y, 2) = o when ozrela within this boundary the particle exist and we need to find the energy values & wowe function V(x1y12)=0 When OLKLb V(x1y,2)=0 WhenoLKLC 11) V(x,y,z)=00 When 0 >x > a Indhisarea the V(x,y,z)=00 wheno 2 x2b Particle duesno V(x,y,z)=0 when 0> x 7.C exist and therefore the wave fun! =0 3-D schrodinger time independent wave equ 24 + 24 + 24 + 2m [E-V]4= 0 · V=0 d2y+d2y+d2y+2mE v=0 -a) solution for equals 4(x14,2)=X(x) Y(y) Z(2) & YEXYZ Dx = Y2dx, dx = Y2d2y / dy = X2dy, dy = X2dy 24 = XY dZ 2 24 = XY d2Z sub above three equi in equ@weget $\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} = -\left[\frac{2m}{h^2}E\right]XYZ$ 1 d2x +1 d2y +1 d2z = -[kn2+kg2+k2] $\frac{1}{x}\frac{d^2x}{dx^2} = -kx^2 \cdot \frac{d^2x}{dx^2} + kx^2 x = 0$ dey dy2 - k2y . dy2+ky y= Br. S.THILAGAVATHIAM.E., Ph., PRINCIPAL $\frac{1}{2} \frac{d^2z}{dz^2} = -k^2z \qquad \frac{A^2z}{dz^2} + k_2^2z = 0$ COLLEGE FOR WOMEN
Kaikkurchi - 622 303, Pudukkottai Dt.

	2
	The solutionis X(x) = Ax Sinkit Bx losknix
	$\Lambda(\mathcal{H}) - \Lambda \mathcal{H}$
	Rounday Conditions
	(i) When X=0 X-0
	(1) 1/20 - 1/2 (1)
	(11) when X=a; X=6
	O=Ax Sinkxa
	X(x)=Axconnxox
	Normalization
	Normalization a XXXXII (a) JAX Sin 2 mx 2 m
2	
	X(x)= /a S(x)= /(y)= /= 3/2 (2)= 2 sing 1
	Ergenfunction, - Vinging Sinne Sinny Sinne Sinny Sinne Sinn
	Eigen Values Franky n2 : 12 [1/2 + 1/2 + 1/2] Engen Values 2 1/2 + 1/2 2 2
14)	(a) Obtain the energy values and eigenfunctions
,	1 Comonic Oscillor
	Inquantum harmonic Oscillator the
	molecular atomic Vibrations arguantized and
	the albred energies of a quantum harmonic oscillator are discrete and evenly spaced
	Description / Brook
	Let us Consider a particle of moasm'
	executing simple harmonic motion along the
	Derivation / Proof Let us Consider a particle of mossim' executing simple harmonic motion along the (x' direction (x=0)
	15 x x x x x x x x x x x x x x x x x x x
	As the persticle is displaced through a
	distance 'n' from its equilibrions. THILAGATION (NE. BI) &
	restoring furle (F) exts soon to return the Boaticle
	again its equilibrium position Kaikkurchi-622 303, Pudukköttai Dt.


Kaikkurchi - 622 303, Pudukkoita Dt.

By introducing 4 of egu (12) In egu (1) d2f - 29 dt + [d - 1] f=8 D-1=2PA : Equ (13 becomes def dy2-2ydf +2nf=0 This is the standard mathematical egy/ which is Similar to the Hermite's egy/ 1,e., d2H dy2-2ydH +2nH=0 The solution for equ(15) are called Hermite polynomials, which is smilar to equ (2), i.e., 4n(y)=NAn(y)e-4/2 wher N' is the Normalization constant. . Equ (16) represents the Eigen funt of the harmonic oscillator. Energy Eigen Values The energy eigen values (permitted energy values) Shall be obtained as follows: We know _ 1 -1 = 27 (01) D-2n+1 L: (2nH) P 80 mE = 2n+1 [417 mk]/2 Dr. S.THILAGAN PRINCIPAL

SRI BHARATHI ENGINEERING

COLLEGE FOR WOMEN

Kaikkurchi - 622 303, Pudukkottai Dt.

b) Describe the principle construction and working of a scanning Eunneling microscope Introduction: - In 1980, Gerd Binning and Heinrich Rohrer Invented a new type of microscope.
Called Scanning tunneling microscope.

Principle Tunneling of electron between the shorp metallic tip of the probe and the surface of a sample

Here, constant tunnelling current is mailained by adjusting the distance between the tip and the sample in the an air gapfore to turnel. In a similar waythe top is used to scan atom by atom and line by line of the sample and the Lopby raphy of the sample is recorded in the computer

Construction

i) The tip is tapered down to a smale atom, sothat it can follow even a small change in the Countours of the sample, tipis connected to

(ii) The sample for which the image has to be recorded is kept below the tip of the probe

at a particular disbance.

(11) The computer is also used to record the path of the probe and the topography of the sample ina grey scale Working

1. Circuit is switched on and necessary brasinet voltage is given to the probe

ii) The tunneling current flows through the circuit only if the tip is in contact with the Sample through the small air gastate with the between them.

The arrent produced ; Kaikkurchi Mana Ruduksottaide

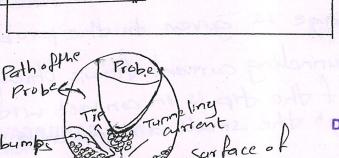
- IV) For maintaing Constant current, the distance (d) between the tip and the sample should be continously adjusted.
- V) The height flucturations (d) between the tip and the sample is accurately recorded
- vi) The tip is scanned atom by otom and line by line of the sample and the topography of the sample is recorded in the computer

Advantages

- i) It can soan, the positions Stopography atom by atom (or) even electrons
- ii) Very accurate measurement

Disadvantages

i) Evena very small Sound (or) Vibrations will


disturb the measurment setup

ii) Cast is high

X,Y,Z.

Pasitioning Amplites

Scanner

Sample

Dr. S.THILAGAVATHI M.E., Ph.D.,
PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN

Kaikkurchi - 622 303, Pudukkottai Dt.

Tunneling Current

Vollage

Brasing

13) (a) Describe the barrier penetration process and quantum tunneling of an electron Barrier penetration

I fapardicle with energy E'is incident on a thin energy barrier of height 'V', greater than E' then there is a finite probability of the

particle to penetrate the barrier - barrier penetras

Potential Ramienty)

V=0

Transmitted wave

wave y2

Tensmitted wave

E Region(1) Region

For region :- 1 when x Lo; v=0

When ockliver For region 2

when x>l; v=0 for region 1

Forregion1

For region 2 12 + 2m [V-E) 4=0 d242 - P242 =0

d243 + 2m E450 d243 + 245 =0

4. (Incident) = Acidic A-amplitude of w, (Reflected) = Boidin Incident wave Region-1 Region - 2

42 = FeBX+GC-BX B= F2mCYE)

Region-3 4 (Transmitted) Dr. S. THILAGAVATHI M.E., Ph.D. SRI BHARATHI ENGINEERING 4a (Reflected) =0 **COLLEGE FOR WOMEN** Kaikkurchi - 622 303, Pudukkottai Dt.

Transmission Co-efficient The transmission Coeff! To ICI 4JE JE-V IAI2 [TE+JE-y]2 Reflection co-efficient R= IRI2 = FE-VE-V b) Write a brief note on Rloch's theorem for Porsticles in a periodic potential and woning penney model. Statement of an electron wave funt. moving ing Perfectly periodic potential d24 + 2m [E-V(x)4(n)=0 V(n)=V(n+9), 4(x)=e'kn un(n), up(x)=up(n+9)
: 4(x+9)=e'k(x+9) Ux (xta) 4(x) = 4(x+a) Kronig-Penney model. Region() OLKLA d24 + 2m (F-0)420 (Regionii) - berea 24 + 2m (E-Vo)4=0 Y(x) = cikkun(x) Ponty losta Pendo + Gosda = Goska Forbidden Condassions Allowed (1) The energy spectrum Loand) allowed energy bands 13 horazondal lines & forbidden gaps denoted by dotted lines ii) Pisincreased binding energy increased so allowed energy become narroy -> binding energy

Part B (5x16=80 marks) 11) a) What is meant by Simple harmonic motion? Arrive at the differential equation for a particle executing SHMI Definition Simple Harmonic motion is the motion in which the accederation of a body is directly proportional to the displacement from a fixed point and is always directed towards the fixed point (at) equilibrium position Differential Egyl: for a simple Harmonic Motion (i) Pisplacement This displacement of Vibrating particle at any instant is defined as the distance mered by the particle from its mean position of rest LPOX = Lapo = 0 = w t Y= Asmwt 1) Velocity: - Volucity of the Vibrating particle isdefined as the rate of change of displacement. V=A Co Coswt ii) Aucheration: Acceleration of the Vibrating particle is defined on the rate of change of Velocity Graphical Representation of SAMI-y characteristics of SHM (1) The motion of the particle in sandagavathim. E. Ph.D.
PRINCIPAL
The motion of the particle is salaharathi engineering
The mean position
Kaikkurchi-622 303, Pudukkottai Dt. about its mean position Kaikkurchi-622303, Pudukkottai Dt.

(1) Accelecration of the paratrele is proportional to that

6) What is meant by correspondance principle? Give examples Correspondence principle According to correspondence principle "for Large Value of principal quantum number in, the quantum mechanics merges with classical mechanics" i.e., the classical theory and quantum theory will have same results In other words we can say that the quantum mechanics under certain Limits Like highenergy (01) high mons (01) highlength (or) higher quantum numberebe itapproaches classical mechanics Quantum mechanics (ertain) classicalmechanics

7) What doyou understand by the Germ Transmission

(a-chrient) co-efficient 1 Square of the amplitude of that function. Therefore the barrier transmission co-efficient (T) is the vation between the square of the amplitudes of the transmitted wave [c] and the incident wave [A]2 . The frammission Coeffil: = T= 1cl2 itis called as "Penetrability" of the barrier 8) what is mean by Quantum Eurneling? In quantum mechanics a particle having Lesser energy (E) than the barrier potential (V) can easi lyggross over the potential barrier having a finite width l'even without climbing over the barrier by tunneling through the barrier. This process is called Tunnelling 9) Give any two application of STMI i) It is used to produce Integrated Circuit ii) It is used in Biomedical devices it is used Research labs are the major areas in which iv) They are used in material science studies for both bump and flat surfaces.

What is the principle used in Reponant diock, PRINCIPAL PRINCIPAL PRINCIPAL PRINCIPAL COLLEGE FOR WOMEN turneling effect, in which the charge Katharonian 303, Europeine 101. the energy barrier even with leaver energy than the barrier potential, Quantum mechanically. The Probability

HOPE COLLEGE OF THE PARTY OF TH

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

(Approved by AICTE, New Delhi and affiliated to Anna University, Chennai)

Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India

Internal Assessment Test Answer Book

Name	R. Willing was			Year/ Semester		I/I
Reg No.	912622104033	Date/Session	24.02.23 3A.N	Department	-	CSE
Course code	PH3151	Course Title	Enginee	ring Physic	5.	
Cycle Test (Put a tick mar	k)	CT 1	CT 2	CT 3	Mode	
Name and Signa	ature of the Invigila	tor with date	s. By	24/2/23 S	RENL	MADEM

Instructi	on to	the Student:	Put tick man	k to th	he question at	tended	d in the column	against question.
1	Part A			F				
O No	1	Marks	O NO	1	a	1	b	Total Marks
Q. No.		Marks	Q. NO.		Marks		Marks	
1	~	2	11	~	14			14
2	~	2	12				15	15
3	~	2	13 - 14					14
4	~	2	14			~	14	14
5	~	2	15	~	15			15
6	~	2	16					
7	~	2				G	rand Total	72
8	V	1		a	1		D 0	-
9	~	2	Gra	and 7	Γotal	3	R.S.	25/2/23
10	V	2					R. SAF	2PTH47
Total		19				0		Signature ner with date

		To be fi	lled by the ex	aminer			
Course Outcomes	1	2	3	4	5	6	Total
Marks allotted			20		40	40	100
Marks Obtained			18		37	36	91

IQAC Audit - Remarks

Dr. S.THILAGAVATHI M.E., Ph.D.,

PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303, Pudukkottai DL

Name and Signature of the IQAC member

CMMs.B.PRIYA).

SRI BHARATHI ENGINEERING COLLEGE FORWOMEN

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

Kaikkurichi, Pudukkottai-622 303

ACADEMIC YEAR 2022-2023 -- ODD SEMESTER STUDENTS MARK STATEMENT-CO BASED

SECTION -A CYCLE TEST-II

PROGRAM

: B.E / CSE

YEAR/SEM

: I/II

SUBJECT CODE & TITLE: PH3151 & ENGINEERING PHYSICS

: 24.02.2023

SI .NO	SI .NO REG.NO NAME		CO3 (20)	CO5 (40)	CO6 (40)	MAXIMUM MARKS 100
1	912622104001	ABINAYA.E	06	12	11	29
2	912622104002	ABIRAMI.C	08	18	14	30
3	912622104003	AJITHA.M	10	18	28	56
4	912622104004	AKSHAYA.M	08	09	18	35
5	912622104005	ANANTHI.K	10	32	26	68
6	912622104006	ASIYA.A	09	19	24	52
7	912622104007	ATCHAYA.B	15	33	36	84
8	912622104008	BARJUSHFATHIMA.P	10	29	24	63
9	912622104009	BAVADHARANI.S	05	11	09	25
10	912622104010	DEVADHARSHINI.P	12	22	29	63
-11	912622104011	DEVI SRI.R	10	23	25	58
12	912622104012	DHANALAKSHMI.G	05	06	07	18
13	912622104013	DHANASRI.E	14	27	33	74
14	912622104014	FEMINA.M	09	22	23	54
15	912622104015	GOMATHI.P	12	19	20	51
16	912622104016	GOPIKA SRI.Y	11	23	25	59
17	912622104017	INBA.M	10	21	23	54
18	912622104018	ISHWARYA.S	12	23	25	61
19	912622104019	JAMEELA.M.A	19	37	34	90
20	912622104020	JEEVITHA.S	14	32	36	82
21	912622104021	KAVIPRIYA.S	13	22	23	58
22	912622104022	KAVIYAPRIYA.P	16	36	30	82
23	912622104023	KAVIYARASI.M	14	25	28	67
24	912622104024	KEERTHANA.S(9.10.2004)	13	21	26	60
25	912622104025	KEERTHANA.S(29.8.2005)	12	19	19	50
26	912622104026	KRISHNAVENI.C	09	26	15	50
27	912622104027	LAKSHMI PRIYA.D	16	29	09	54
28	912622104028	LALITHAMBIGAI.K	16	34	36	86
29	912622104029	LATHIKA.G	05	20	32	57
30	912622104030	MADHUMITHRA.D	08	11	15	34
31	912622104031	MAHALAKSHMI.K	14	26	33	73
32	912622104032	MANIMEGALAI.V	11	24	33	68

Dr. S.THILAGAVATHI M.E., Ph.D. PRINCIPAL

33	912622104033	MANJULA.R	17	36	38	91
34	912622104034	MEENAKUMARI.K	06	12	09	27
35	912622104035	NANDHINI PRIYA.N	00	11	06	17
36	912622104036	POORANI.S	06	09	18	33
37	912622104037	PRADEEPA.P	11	18	33	62
38	912622104038	PRIYADARSHINI.K	01	06	02	09
39	912622104039	PRIYADHARSHINI.D	17	22	37	76
40	912622104040	ROHINI.N	11	09	02	22

MARK RANGE:

<20	20-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100
03	05	03	02	11	07	03	05	.01

Total Number of Present	40
Total Number of Absent	NIL
Total Number of Candidates Pass	29
Total Number of Candidates Fail	11
Pass Percentage	72.5%

Signature Of the Faculty Incharge

HOD/S&H 08/2/25

HOD / Sal

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN
KAIKKURICHI
PUDUKKOTTAI - 622 303.

Principal

PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI - 622 303. PUDUKKOTTAI DISTRICT

Dr. S.THILAGAVATHIM.E., Ph.D.)
PRINCIPAL

SRI BHARATHI ENGINEERING

COLLEGE FOR WEMEN Kaikkurchi - 622 303, Pudukkutai Dt.

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

(Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai-25)

Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India

DEPARTMENT OF SCIENCE AND HUMANITIES

ROOT CAUSE ANALYSIS

Name of the Faculty :

: Mrs R.Saratha

Course Code & Name: PH3151& Engineering Physics

: I

Degree & Program

: **B.E & CSE**

Semester

Cycle Test

: I/II

Month & Year

: February & 2023

Target

: 100%

Achieved

: 72.5 %

CNO	DEC NO.	NAME OF THE OTHER PARTY.		CORRECTIVE
S.NO	REG NO	NAME OF THE STUDENT	CAUSES FOR FAILURE	ACTION TAKEN
Halon	912622104001	ABINAYA.E	Confussed in Lerivation Part	Advise the students to Practice on derivation Part
2.	912622104002	ABIRAMI.C	Lack of Practise in derivation Part	Daving office hours Eest Conducted
3.	912622104004	AKSHAYA.M	Not study Well	Home test given
4.	912622104009	BAVADHARANI.S	Lack of Revision in cycle test Syllabus	Instructed to Revise the Syllabus
5.	912622104012	DHANALAKSHMI.G	Confused in Lerivation Part	Advise the Students to Sire more Prevetice
6.	912622104030	MADHUMITHRA.D	Not Prepared well	Instructed to prepare well
7.	912622104034	MEENAKUMARI.K	Careless mistake	Home test given
8.	912622104035	NANDHINI PRIYA.N	Poer Concentration on cycle test Syllabas	Instruct the Students to Concentrate on olcrivation Part
9.	912622104036	POORANI.S	Not Study Well	Counselling given to attendtest

Dr. S.THILAGAVATHI M.E., Ph.D., PRINCIPAL

10.	912622104038	(15) 中于 [2] [2] (2] (2] (2] (2] (2] (2] (2] (2] (2] (Lack of Pactise Instruct the on derivation Preserve well
11.	912622104040	ROHINI.N	Confused in Instanted to applying the study well

Signature of the Faculty Member

Consultivery

1 State of the little

Signature of the HoD/S&H

HOD / S&H

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICH PUDUKKOTTA! - 622 303.

Dr. S.THILAGAVATHI M.E., Ph.D.,

PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI, PUDUKKOTTAI – 622 303.

CIRCULAR

Date: 02.03.2023

Retest for Second cycle test will be conducted from **04.03.2023** to **14.03.2023** for the I semester (I year) students.

The following instructions are to be followed by the faculty members.

- Total marks for which the question paper to be set will be for 50 marks.
 (PART A 9X2=18 PART B 2X16=32 Only for Mathematics Subject) and
 (PART A 5X2=10 PART B 2X13=26 & PART C 1X14=14)
- It is the responsibility of the question paper setter to take the Xerox copies of the required number of question papers.
- Concerned Faculty members are requested to conduct the examination as per the scheduled and handover the valued answer scripts to the students on or before 15.03.2023.

PRINCIPAL

Cc:

- All HoD's CIVIL/CSE/EEE/ECE
- All faculty
- IQAC Co-ordinator
- Exam cell
- Office file

or S.THILAGAVATHLM.E.,Ph.D

PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI, PUDUKKOTTAI – 622 303.

CIRCULAR ·

Date: 02.03.2023

Retest for Second cycle test will be conducted from 04.03.2023 to 14.03.2023 for the I semester (I year) B.E students for 50 marks as per the time table given below. Students are directed to prepare well and score good marks.

Date	04.00 pm -05.30 pm
04.03.2023	CY3151-Engineering Chemistry
06.03.2023	PH3151-Engineering Physics
10.03.2023	GE3151-Problem Solving and Python Programming
11.03.2023	MA3151-Matrices and Calculus
14.03.2023	HS3151-Professional English I

• All I year B.E Classes

• All faculty

Cc:

IQAC Co-ordinator

• Exam cell

Notice Board

Office file

PRINCIPAL

Dr. S.THILAGAVATHI M.E., Ph.D.,
PRINCIPAL

Register Number:												
------------------	--	--	--	--	--	--	--	--	--	--	--	--

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

(Approved by AICTE, New Delhi and affiliated to Anna University, Chennai) Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India

	Cycle test – I	I (Retest)	Date/Session	06.03.2023 /AN	Marks 50									
Course co	ode PH3151	Course Title	ENGINEERING PHYSICS											
Regulatio	n 2021	Duration	1.30 hours	Academic Year	2022 - 2023									
Year	I	Semester	I	Department	All Branches									
COURSE	OUTCOMES			-										
C103.1	Acknowledge the importance of mechanics.													
C103.2	Express their knowledge	ge in electromagnetic waves												
C103.3	Demonstrate a strong for	oundational knowledge in o	scillations, optics and	lasers.										
C103.4		dational knowledge in fiber												
C103.5		tance of quantum physics.												
C103.6		quantum mechanical princi	inles towards the form	ation of energy bands										

Q.No.	Question	СО	BTS
	PART A		
	(Answer all the Questions $9 \times 2 = 18 \text{ Marks}$)		
1	State the law of refraction.	C103.4	K2
2	Define Damped oscillations	C103.3	K1
3	What are the properties of matter waves?	C103.5	K2
4	State de-Broglie's hypothesis.	C103.5	K2
5	What is meant by Degenerate and non- degenerate.?	C103.5	K2
6	What is meant by correspondence principle? Give example.	C103.5	K2
7	What do you understand the term 'Wave function".	C103.5	K2
8	What do you understand by the term Transmission Co-efficient	C103.6	K2
9	State Bloch's theorem.	C103.6	K2
	PART B		
	(Answer all the Questions $2 \times 16 = 32$ Marks)		
lla	Describe an experiment to determine the thickness of a thin material by forming an Air Wedge	C103.4	K2
	OR		
11b	Explain the formation of standing waves at various interval of time	C103.4	K2
12a	Derive the eigen values for a particle in a finite square well potential	C103.6	K3
	OR		
12b	Write a brief note on Bloch's theorem for particles in a periodic potential and Kronig penney model	C103.6	K3

Course Faculty 3 /8 |23

Dr. S.THILAGAVATHI M.E. Ph.D.,

PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303, Pudukkottai Dt.

Name /Sign / Date)

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

Kaikurichi, Pudukkottai -622 303

ACADEMIC YEAR 2022-2023 -- ODD SEMESTER

ATTENDANCE SHEET FOR RETEST **SECTION -A**

RETEST FOR CYCLE TEST-II

PROGRAM

: B.E / CSE

YEAR/SEM

: I/I

SUBJECT CODE & TITLE: PH3151 - ENGINEERING PHYSICS

: 06.03.2023

SI .NO	REG.NO	NAME	SIGNATURE
1	912622104001	ABINAYA.E	E Abinaya
2	912622104002	ABIRAMI.C	Abirani c
3	912622104004	AKSHAYA.M	Aksheyam
4	912622104009	BAVADHARANI.S	Rangebenen
5	912622104012	DHANALAKSHMI.G	Dhandely &
6	912622104030	MADHUMITHRA.D	Morchumphy . A
7	912622104034	MEENAKUMARI.K	& Dupi
8	912622104035	NANDHINI PRIYA.N	Namoluniani
9	912622104036	POORANI.S	Poorani.
10	912622104038	PRIYADARSHINI.K	d' Peil
11	912622104040	ROHINI.N	Rohine N

Signature of the Faculty Incharge

HOD / S&H

SRI BHARATHI ENGINEER!!!G **COLLEGE FOR WOMEN**

KAIKKURICHI

PUDUKKOTTAI - 622 303.

Dr. S.THILAGAVATHI M.E. Ph.D. PRINCIPAL

SRI BHARATHI ENGINEERING **COLLEGE FOR WOMEN**

Kaikkurchi - 622 303, Pudukkottai Dt.

SRI BHARATHI ENGINEERING COLLEGE FORWOMEN

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)

Kaikkurichi, Pudukkottai-622 303 ACADEMIC YEAR 2022-2023 -- ODD SEMESTER STUDENTS MARK STATEMENT- CO BASED **SECTION-A**

RETEST FOR CYCLE TEST-II

PROGRAM

: B.E / CSE

YEAR/SEM

: I/I

SUBJECT CODE & TITLE: PH3151 & ENGINEERING PHYSICS

: 06.03.2023

SI .NO	REG.NO	NAME	CO4 (20)	CO5 (10	CO5 (20)	Marks 50	MAXIMU M MARKS 100
1	912622104001	ABINAYA.E	16	5	14	35	70
2	912622104002	ABIRAMI.C	14	8	15	37	. 74
3	912622104004	AKSHAYA.M	15	8	16	39	78
4	912622104009	BAVADHARANI.S	14	. 8	16	38	76
5	912622104012	DHANALAKSHMI.G	14	7	15	36	72
6	912622104030	MADHUMITHRA.D	16	7	15	38	76
7	912622104034	MEENAKUMARI.K	14	7	15	37	74
8	912622104035	NANDHINI PRIYA.N	13	6	14	33	66
9	912622104036	POORANI.S	16	7	13	36	72
10	912622104038	PRIYADARSHINI.K	14	4	13	31	62
11	912622104040	ROHINI.N	14	8	15	37	74

Signature of the Faculty Incharge

HOD/S&H SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

KAIKKURICHI PUDUKKOTTAI - 622 303.

SRI BHARATHI ENGINEERII COLLEGE FOR WOMEN KAIKKURICHI - 622 303. **PUDUKKOTTAI DISTRICT**

Dr. S.THILAGAVATHI M.E. Ph.D.

PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)
Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India

DEPARTMENT OF SCIENCE AND HUMANITIES

ACADEMIC YEAR 2022 - 2023 (ODD SEMESTER)

FINAL INTERNAL STUDENTS MARK STATEMENT(Out of 40)

SUBJECT CODE &TITLE: PH3151 & ENGINEERING PHYSICS

YEAR/SEM

: I/I

SECTION/BRANCH

: A/ CSE

SI .NO	REG.NO	NAME	TOTAL (40)
1	912622104001	ABINAYA.E	30
2	912622104002	ABIRAMI.C	33
3	912622104003	AJITHA.M	30
4	912622104004	AKSHAYA.M	31
5	912622104005	ANANTHI.K	37
6	912622104006	ASIYA.A	32
7	912622104007	ATCHAYA.B	38
8	912622104008	BARJUSHFATHIMA.P	35
9	912622104009	BAVADHARANI.S	32
10	912622104010	DEVADHARSHINI.P	34
11	912622104011	DEVI SRI.R	37
12	912622104012	DHANALAKSHMI.G	32
13	912622104013	DHANASRI.E	36
14	912622104014	FEMINA.M	34
15	912622104015	GOMATHI.P	32
16	912622104016	GOPIKA SRI.Y	33
17	912622104017	INBA.M	32

Dr. S.THILAGAVATHI M.E.PH.D.

		PROPERTY OF STREET	25
18	912622104018	ISHWARYA.S	35
19	912622104019	JAMEELA.M.A	37
20	912622104020	JEEVITHA.S	34
21	912622104021	KAVIPRIYA.S	34
22	912622104022	KAVIYAPRIYĄ.P	39
23	912622104023	KAVIYARASI.M	38
24	912622104024	KEERTHANA.S	36
25	912622104025	KEERTHANA.S	35
26	912622104026	KRISHNAVENI.C	31
27	912622104027	LAKSHMI PRIYA.D	33
28	912622104028	LALITHAMBIGAI.K	37
29	912622104029	LATHIKA.G	34
30	912622104030	MADHUMITHRA.D	31
31	912622104031	MAHALAKSHMI.K	35
32	912622104032	MANIMEGALAI.V	36
33	912622104033	MANJULA.R	38
34	912622104034	MEENAKUMARI.K	31
35	912622104035	NANDHINI PRIYA.N	32
36	912622104036	POORANI.S	32
37	912622104037	PRADEEPA.P	33
39	912622104038	PRIYADARSHINI.K	38
38	912622104039	PRIYADHARSHINI.D	36
40	912622104040	ROHINI.N	30

Faculty Incharge

R.Scit HOD/S&H

HOD/S&H **SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN** KAIKKURICHI PUDUKKOTTAI - 622 303.

PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI - 622 303. PUDUKKOTTAI DISTRICT

Principal

Dr. S.THILAGAVATHI M.E., PALL., PRINCIPAL SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt.

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

(Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai-25)
Kaikkurichi, Pudukkottai, Tamil Nadu – 622 303, India
DEPARTMENT OF SCIENCE AND HUMANITIES

ACADEMIC YEAR 2022 – 2023 (ODD SEMESTER)

ANNA UNIVERSITY RESULT STATEMENT NOV/DEC-2022

SUBJECT CODE &TITLE: PH3151 & Engineering Physics

YEAR/SEM

: I/I

SECTION/BRANCH

: A/CSE

S.NO	REG NO	STUDENT NAME	GRADE
1.	912622104001	ABINAYA.E	U
2.	912622104002	ABIRAMI.C	B+
3.	912622104003	AJITHA.M	U
4.	912622104004	AKSHAYA.M	U
5.	912622104005	ANANTHI.K	A
6.	912622104006	ASIYA.A	U
7.	912622104007	ATCHAYA.B	B+
8.	912622104008	BARJUSHFATHIMA.P	B+
9.	912622104009	BAVADHARANI.S	U
10.	912622104010	DEVADHARSHINI.P	B+
11.	912622104011	DEVI SRI.R	A
12.	912622104012	DHANALAKSHMI.G	U
13.	912622104013	DHANASRI.E	B+
14.	912622104014	FEMINA.M	B+
15.	912622104015	GOMATHI.P	U
16.	912622104016	GOPIKA SRI.Y	В
17.	912622104017	INBA.M	U
18.	912622104018	ISHWARYA.S	U

Dr. S.THILAGAVATHI M.E., Ph.D.,

19.	912622104019	JAMEELA.M.A	B+
20.	912622104020	JEEVITHA.S	B+
21.	912622104021	KAVIPRIYA.S	U
22.	912622104022	KAVIYAPRIYA.P	B+
23.	912622104023	KAVIYARASI.M	U
24.	912622104024	KEERTHANA.S	(I) A U A
25.	912622104025	KEERTHANA.S	B+
26.	912622104026	KRISHNAVENI.C	U
27.	912622104027	LAKSHMI PRIYA.D	U
28.	912622104028	LALITHAMBIGAI.K	B+
29.	912622104029	LATHIKA.G	U
30.	912622104030	MADHUMITHRA.D	U
31.	912622104031	MAHALAKSHMI.K	U
32.	912622104032	MANIMEGALAI.V	A
33.	912622104033	MANJULA.R	A
34.	912622104034	MEENAKUMARI.K	U
35.	912622104035	NANDHINI PRIYA.N	U
36.	912622104036	POORANI.S	U
37.	912622104037	PRADEEPA.P	U
38.	912622104038	PRIYADARSHINI.K	B+
39.	912622104039	PRIYADHARSHINI.D	U
40.	912622104040	ROHINI.N	U

Paculty Incharge

HOD/S&H

HOD/S&H

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI

UDUKKOTTÁI - 622 303.

Dr. S.THILAGAVATHI M.E., Ph.D.,

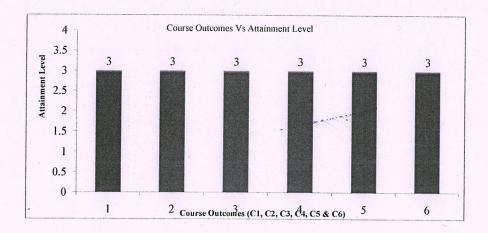
PRINCIPAL SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

Kaikkurchi - 622 303, Pudukkottal Dt.

Principal

PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI - 622 303. PUDUKKOTTAI DISTRICT


SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN, KAIKKURICHI

				-	42		-		-			Depart	nent o	of Scie	ence a	ınd I-	luman	ities	-	in my	,		45	e de la companya		4	-				· Pinit		1 700
	1						Inte	rnal A	Asses	smen	t -Att	ainme	ent of	Cour	rse O	utcoi	mes (T	Thro	ough	Dire	ct A	ssessn	nent)							1 4 1			
	4 4 4			ACA	DEM	IC YE	AR-2	2022 - :	23	Ì.									COL	7: (alla)				BA	тсн			3		202	22 - 2026		
co	OURSE CODE/TITLE	PH3151 (C103) / ENGINE	ERING P	PHYSIC	CS											6	SEESTER	te or	2 may	COLE 16	nik g q		co	URSE	OUTC	OME		1	2	3	4	5	6
	YEAR/SEM	1/1									- 1		TARC	GET(%)		65	65	65	65	65	65											
100	COURSE COORDINATOR	R.SARATHA									1.			T		1		17	T				то	TAL S	TREN	ЭТН	Ta	100	- New York	32	40		
		Level					1						12	1 78					Ra	nge							1	1 38	710		4	33	
AT	TAINMENT LEVEL	Lant vova land		1 50	1							128		To a	UPT	ro 60	0% of t	he st	uden	ts sco	red n	ore th	an tar	get					32		1 30		
AI	TAINMENT LEVEL	2											1	Pig	61	- 79%	6 of the	stu	dents	score	ed mo	re tha	ı targe	et		Ta			7	1	1		
20	APOSS LORONY	3												1	80% &	ABO	OVE of	the	stude	ents se	cored	more	than ta	rget						1	Ť.		
42	910033104014	NAME OF THE	IAT	1 - MA	RKS	A	ALLO	TED		IAT 2	- MAF	RKS AI	LLOT	ED	1A	ΛТ3-	- MAR	KS	ALI	LOTE	D	Assig	gnmen		Projec	t /Tut	orial/	35	TOTA	AL COU	RSE OU	тсомі	3
S.NO	REG NO	STUDENT	C1	C2	СЗ	C4	C5	C6	C1	C2	С3	C4	C5	C6	C1	C2	2 C3		24	C5	C6	CI	C2	СЗ	C4	C5	C6	C1	C2	СЗ	C4	C5	C6
			40	30	30							40	30	30			i i						10	10		10	10	40	40	40	40	40	40
1	912622104001	ABINAYA.E	30	23	23							29	23	23									9	8		9	8	30	32	31	29	32	31
2	912622104002	ABIRAMI.C	34	25	25							29	23	23									8	9		7	7	34	33	34	29	30	30
3	912622104003	AJITHA.M	28	21	21							32	24	24									9	8		8	8	28	30	29	32	32	32
4	912622104004	AKSHAYA.M	32	23	23							31	24	24									8	8		8	8	32	31	31	31	32	32
5	912622104005	ANANTHI.K	37	27	27		l.,					37	29	29									8	8		8	9	37	35	35	37	37	38
6	912622104006	ASIYA.A	31	23	23							34	25	25									8	7	•	9	8	38	37	36	38	38	37
7	912622104007	ATCHAYA.B	38	29	29							38	29	29		1							8	9		9	8	33	34	35	36	35	34
8	912622104008	BARJUSHFATHIMA.P	33	26	26							36	26	26	17								8	8		8	8	32	31	31	33	33	33
9	912622104009	BAVADHARANI.S	32	23	23							33	25	25									9	9		9	9	32	34	34	34	35	35
10	912622104010	DEVADHARSHINI.P	32	25	25					1		34	26	26									7	8		8	9	36	35	36	37	35	36
11	912622104011	DEVI SRI.R	36	28	28		4					37	27	27									9	8		9	8	31	33	32	32	33	32
12	912622104012	DHANALAKSHMI G	31	24	24		No.	line a				32	24	24	3								8	9		8	9	37	35	36	37	35	36
13	912622104013	DHANASRI E	37	27	27							37	27	27									9	9		9	9	32	34	34	36	36	36
14	912622104014	FEMINA.M	32	25	25				1			36	27	27									7	8		7	8	32	31	32	33	31	32
15	912622104015	GOMATHI.P	32	24	24		1	Jan S			1	33	24	24	1	1							8	8		8	9	33	32	32	34	33	34
16	912622104016	GOPIKA SRLY	33	24	24		-	+	-	1	-	34	25	25	+	1						+	8	7		8	9	31	32	31	33	33	34

Dr. S.THILAGAVATHI M.E., Ph.D.,
PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303, Pudukkottai Dt.

				1																										
17	912622104017	INBA.M	31	24	24		114	h	74	3	3	25	25	1			- 1			8	7		7	7	33	34	33	36	33	33
18	912622104018	ISHWARYA.S	33	26	26				-	3	6	26	26							7	7		9	8	35	33	33	38	38	37
19	912622104019	JAMEELA.M.A	35	26	26		4		- x		8	29	29				-4			9	8		8	9	32	33	32	35	35	36
20	912622104020	JEEVITHA.S	32	24	24					3	5	27	27							9	8		7	9	32	34	33	35	33	35
21	912622104021	KAVIPRIYA.S	32	25	25					3	5	26	26							8	9		9	9	37	37	38	38	38	38
22	912622104022	KAVIYAPRIYA.P	37	29	29					3	8	29	29							7	7		9	9	37	35	35	39	38	38
23	912622104023	KAVIYARASI.M	37	28	28					3	9	29	29				,			9	7	1	8	7	37	37	35	36	35	34
24	912622104024	KEERTHANA.S (9.10.2004)	36	28	28					3	6	27	27							8	8		7	8	33	34	34	36	34	35
25	912622104025	KEERTHANA.S (29.8.2005)	33	26	26					3	6	27	27							9	9		9	9	29	32	32	33	33	33
26	912622104026	KRISHNAVENI.C	29	23	23					3	3	24	24							9	8		8	9	31	33	32	35	34	35
27	912622104027	LAKSHMI PRIYA.D	31	24	24					3	5	26	26							7	- 8		8	8	37	34	35	38	37	37
28	912622104028	LALITHAMBIGALK	37	27	27					3	8	29	29	1,			- 1			8	9		8	7	32	33	34	36	34	33
29	912622104029	LATHIKA G	32	25	25					3	6	26	26							9	9		9	8	29	32	32	32	34	33
30	912622104030	MADHUMITHRA.D	29	23	23					3	2 :	25	25							7	7		7	9	34	33	33	37	34	36
31	912622104031	MAHALAKSHMI.K	34	26	26					3	7 :	27	27							8	7		8	7	36	34	33	36	35	34
32	912622104032	MANIMEGALAI.V	36	26	26					3	6 2	27	27	1						9	8		8	8	36	37	36	39	37	37
33	912622104033	MANJULA.R	36	28	28					3	9 2	29	29							8	9		9	9	30	30	31	33	33	33
34	912622104034	MEENAKUMARI.K	30	. 22	22	3. Y				3	3 2	24	24	163						8	7	1 1 	9	8	33	32	31	32	33	32
35	912622104035	NANDHINI PRIYA.N	33	24	. 24	V TE	14 (2)		1.5	3	2 2	24	24	2.3	VIO	177	T(13)		evátas	8	8	eni Liolei	9	7	32	32	32	32	34	32
36	912622104036	POORANI.S	32	24	24					3	2 2	25	25	1000		is desir	enge. 1	sesq b		7	9		7	9	31	31	33	34	32	34
37	912622104037	PRADEEPA.P	31	24	24					3	4 2	25	25	LAUS (L tos B	gry tour	X	M MO S	1912 1811	8	8		9	9	38	36	36	38	37	37
38	912622104038	PRIYADARSHINI.K	38	28	28					3	8 2	28	28	1995.3	01 QE	stode	ige sex	Sec 10 K	s april 20	7	9		9	9	36	34	36	36	37	37
39	912622104039	PRIYADHARSHINI.D	36	27	27					3	5 2	28	28			- 8	politic .			9	7		8	9	28	30	28	32	.33	34
40	912622104040	ROHINI.N	28	21	21					3	2 2	25	25							8	8	MYM	9	9	28	29	29	32	34	34
	1 11 11 11 11 11 11															CO's	Target	Value							26.0	26.0	26.0	26.0	26.0	26.0
														No. of	Studer	its scor	ed abor	ve CO's	Target	Valu	е				40	40	40	40	40	40
7.(8)	REE CONTURE	SMEET REFORM FOR DARK	alvo si	8.8 KG										Perc	entage	of Stu	dents s	cored ab	ove Tar	get	B 2 6	HILL)	E.A.		100.0	100.0	100.0	100.0	100.0	100.
				ACA	E REB	AERE -	APS 2									СО	Attaini	ment			Help	en.			3	3	3	3	3	3
					2.2	i iii	a laj V	25.23	HEUL	A tex (a)				CC) attain	ment \	/alues	to plot t	he Grap	oh					3	3	3	3	3	3

Dr. S.THILAGAVATHI M.E., Ph.D.,
PRINCIPAL
SRI BHARATHI ENGINEERING
COLLEGE FOR WOMEN
Kaikkurchi - 622 303, Pudukkottai Dt.

HOD / S&H SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHI PUDUKKOTTAI - 622 303.

Dr. S.THILAGAVATHI M.E., Ph.D., PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

Kalkkurchi - 622 303, Pudukkottai Dt.

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN DEPARTMENT OF SCIENCE AND HUMANITIES COURSE OUTCOME ATTAINMENT - UNIVERSITY EXAMINATION ACADEMIC YEAR : 2022 - 2023 (ODD SEM)

Batch:2022-2026

YEAR /SEM: I/I SUBJECT: PH3151 (C103) / ENGINEERING PHYSICS

CO Attainment Level: 1 - (UPTO 60%) 2- (61%-79) 3-(80% and Above)

TOTAL STRENGTH:

40

S.NO	Register No	NAME	Univ. Grade
1	912622104001	ABINAYA.E	U
2	912622104002	ABIRAMI.C	B+
3	912622104003	AJITHA.M	U
4	912622104004	AKSHAYA.M	U
5	912622104005	ANANTHI.K	A
6	912622104006	ASIYA.A	U
7	912622104007	ATCHAYA.B	B+
8	912622104008	BARJUSHFATHIMA.P	B+
9	912622104009	BAVADHARANI.S	U
10	912622104010	DEVADHARSHINI.P	B+
11	912622104011	DEVI SRI.R	A
12	912622104012	DHANALAKSHMI.G-	U
13	912622104013	DHANASRI.E	B+
14	912622104014	FEMINA.M	B+
15	912622104014	GOMATHI.P	U
16	912622104013	GOPIKA SRI.Y	B+
17	912622104017		U U
18	912622104017	INBA.M ISHWARYA.S	U
19	912622104018	JAMEELA.M.A	B+
20	912622104019		
21	912622104020	JEEVITHA.S	B+
22	912622104021	KAVIPRIYA.S	U
-	912622104022	KAVIYAPRIYA.P	B+
23	912622104023	KAVIYARASI.M	U
24	912622104024	KEERTHANA.S (9.10.2004)	U
25	912622104026	KEERTHANA.S (29.8.2005) KRISHNAVENI.C	B+ U
27	912622104027	LAKSHMI PRIYA.D	U
28	912622104027		B+
29	912622104029	LALITHAMBIGAI.K LATHIKA.G	U U
30	912622104029		
-	912622104030	MADHUMITHRA.D	U
31	912622104031	MAHALAKSHMI.K	U
-		MANIMEGALAI.V	A
33	912622104033	MANJULA.R	A
34	912622104034	MEENAKUMARI.K	U
35	912622104035	NANDHINI PRIYA.N	U
36	912622104036	POORANI.S	U
37	912622104037	PRADEEPA.P	U
38	912622104038	PRIYADARSHINI.K	B+
39	912622104039	PRIYADHARSHINI.D	U
40	912622104040	ROHINI.N	U
		of O Grade	0
		of A+ Grade	0
		of A Grade	4
		of B+ Grade	13
		of B Grade	0
		of C Grade	0
		of U Grade	23
at for any		of UA Grade	0
	se outcome Attainment above the target		60
students	above the target		17

Raculty Incharge

HOD / S&H

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

KAIKKURICH PUDUKKOTTAI - 622 303,

PRINCIPAL

со	CO-Attainment Internal (CO-INT) (Avg. Attainment of All section) (%)	CO-Attainment University (CO-UNI) (Avg. Attainment of All section) (%)	Direct CO Attainment (0.20xCO-INT + 0.80xCO-UNI) (%)	CO Attainment Level
C103.1	100.0	42.50	54.0	·
C103.2	100.0	42,50	54.0	1
C103.3	100.0	42.50	54.0	1 7
C103.4	100.0	42.50	54.0	1
C103.5	100.0	42.50	54.0	1
C103.6	3.0	42,50	34.6	ı

Expected CO-PO Level

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSOI	PSO2	PSO3
C103.1	3	3	2	2	W 500 - 30	- 1	-	-	-	1		1	-	-	-
C103.2	3	3	2	2		1	-	-		1	-	1			-
103.3	3	3	2	2		1		-		1		1		-/	1 -
103.4	3	3	2	2		1		-	-	1	-		-	-	
103.5	3	3	2	2	-	1	-	-		1	-				
103.6	3	3	2	2	-	1		-	-						-
C103	3	3	2	2	<u> </u>	1		-		1	-	1	-		-

Course	PO1	PO2	PO3	PO4	P05	P06	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
C103.1	1	1	0.67	0.67		0.33				0.33	-	0.33	-		-
C103.2	1	1	0.67	0.67		0.33		-		0.33		0.33	-	-	-
C103.3	1	1	0.67	0.67	-	0.33	4 - 10			0.33		0.33			-
C103.4	1	1	0.67	0.67	-	0.33		-	- /	0.33		0.33		-	-
C103.5	1	i	0.67	0.67	-	0.33	-	-		0.33	-	0.33	-	-	-
C103.6	1	1	0.67	0.67	-	0.33	Mar. 11			0.33		0.33			
C103	1	1. 1	0.67	0.67	-	0.33				0.33		0.33	-	-	

	-		A	Attainment of POs and PSOs:			1000								
Course Code	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSOI	PSO2	PSO3
C203	3	3	2	2	-	1	-		-	1		1			-
Attainm ent	1	1	0.67	0.67		0.33	-	-		0.33	-	0.33		- 1	- /

Comments

by Program Coordinator

Remarks by HoD

R. SARATHA

Dr. S.THILAGAVATHI M.E., Ph.D., PRINCIPAL

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN Kaikkurchi - 622 303, Pudukkottai Dt.

P. Satt HOD/S&H

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN KAIKKURICHE PUDUKKOTTAI - 622 303.